268 lines
11 KiB
Python
268 lines
11 KiB
Python
import json
|
|
import os
|
|
import re
|
|
import textwrap
|
|
from datetime import datetime
|
|
from typing import Dict, List
|
|
|
|
from dotenv import load_dotenv
|
|
from langchain_core.messages.ai import AIMessage
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompt_values import StringPromptValue
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_openai import ChatOpenAI
|
|
from Levenshtein import distance
|
|
|
|
import strings
|
|
|
|
load_dotenv()
|
|
|
|
|
|
class LLMLogger:
|
|
|
|
def __init__(self, llm: ChatOpenAI):
|
|
self.llm = llm
|
|
|
|
@staticmethod
|
|
def log_request(prompts, parsed_reply: Dict[str, Dict]):
|
|
calls_log = os.path.join(os.getcwd(), "open_ai_calls.json")
|
|
if isinstance(prompts, StringPromptValue):
|
|
prompts = prompts.text
|
|
elif isinstance(prompts, Dict):
|
|
# Convert prompts to a dictionary if they are not in the expected format
|
|
prompts = {
|
|
f"prompt_{i+1}": prompt.content
|
|
for i, prompt in enumerate(prompts.messages)
|
|
}
|
|
else:
|
|
prompts = {
|
|
f"prompt_{i+1}": prompt.content
|
|
for i, prompt in enumerate(prompts.messages)
|
|
}
|
|
|
|
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
# Extract token usage details from the response
|
|
token_usage = parsed_reply["usage_metadata"]
|
|
output_tokens = token_usage["output_tokens"]
|
|
input_tokens = token_usage["input_tokens"]
|
|
total_tokens = token_usage["total_tokens"]
|
|
|
|
# Extract model details from the response
|
|
model_name = parsed_reply["response_metadata"]["model_name"]
|
|
prompt_price_per_token = 0.00000015
|
|
completion_price_per_token = 0.0000006
|
|
|
|
# Calculate the total cost of the API call
|
|
total_cost = (input_tokens * prompt_price_per_token) + (
|
|
output_tokens * completion_price_per_token
|
|
)
|
|
|
|
# Create a log entry with all relevant information
|
|
log_entry = {
|
|
"model": model_name,
|
|
"time": current_time,
|
|
"prompts": prompts,
|
|
"replies": parsed_reply["content"], # Response content
|
|
"total_tokens": total_tokens,
|
|
"input_tokens": input_tokens,
|
|
"output_tokens": output_tokens,
|
|
"total_cost": total_cost,
|
|
}
|
|
|
|
# Write the log entry to the log file in JSON format
|
|
with open(calls_log, "a", encoding="utf-8") as f:
|
|
json_string = json.dumps(log_entry, ensure_ascii=False, indent=4)
|
|
f.write(json_string + "\n")
|
|
|
|
|
|
class LoggerChatModel:
|
|
|
|
def __init__(self, llm: ChatOpenAI):
|
|
self.llm = llm
|
|
|
|
def __call__(self, messages: List[Dict[str, str]]) -> str:
|
|
# Call the LLM with the provided messages and log the response.
|
|
reply = self.llm(messages)
|
|
parsed_reply = self.parse_llmresult(reply)
|
|
LLMLogger.log_request(prompts=messages, parsed_reply=parsed_reply)
|
|
return reply
|
|
|
|
def parse_llmresult(self, llmresult: AIMessage) -> Dict[str, Dict]:
|
|
# Parse the LLM result into a structured format.
|
|
content = llmresult.content
|
|
response_metadata = llmresult.response_metadata
|
|
id_ = llmresult.id
|
|
usage_metadata = llmresult.usage_metadata
|
|
|
|
parsed_result = {
|
|
"content": content,
|
|
"response_metadata": {
|
|
"model_name": response_metadata.get("model_name", ""),
|
|
"system_fingerprint": response_metadata.get("system_fingerprint", ""),
|
|
"finish_reason": response_metadata.get("finish_reason", ""),
|
|
"logprobs": response_metadata.get("logprobs", None),
|
|
},
|
|
"id": id_,
|
|
"usage_metadata": {
|
|
"input_tokens": usage_metadata.get("input_tokens", 0),
|
|
"output_tokens": usage_metadata.get("output_tokens", 0),
|
|
"total_tokens": usage_metadata.get("total_tokens", 0),
|
|
},
|
|
}
|
|
return parsed_result
|
|
|
|
|
|
class GPTAnswerer:
|
|
def __init__(self, openai_api_key):
|
|
self.llm_cheap = LoggerChatModel(
|
|
ChatOpenAI(
|
|
model_name="gpt-4o-mini", openai_api_key=openai_api_key, temperature=0.8
|
|
)
|
|
)
|
|
|
|
@property
|
|
def job_description(self):
|
|
return self.job.description
|
|
|
|
@staticmethod
|
|
def find_best_match(text: str, options: list[str]) -> str:
|
|
distances = [
|
|
(option, distance(text.lower(), option.lower())) for option in options
|
|
]
|
|
best_option = min(distances, key=lambda x: x[1])[0]
|
|
return best_option
|
|
|
|
@staticmethod
|
|
def _remove_placeholders(text: str) -> str:
|
|
text = text.replace("PLACEHOLDER", "")
|
|
return text.strip()
|
|
|
|
@staticmethod
|
|
def _preprocess_template_string(template: str) -> str:
|
|
# Preprocess a template string to remove unnecessary indentation.
|
|
return textwrap.dedent(template)
|
|
|
|
def set_resume(self, resume):
|
|
self.resume = resume
|
|
|
|
def set_job(self, job):
|
|
self.job = job
|
|
self.job.set_summarize_job_description(
|
|
self.summarize_job_description(self.job.description)
|
|
)
|
|
|
|
def summarize_job_description(self, text: str) -> str:
|
|
strings.summarize_prompt_template = self._preprocess_template_string(
|
|
strings.summarize_prompt_template
|
|
)
|
|
prompt = ChatPromptTemplate.from_template(strings.summarize_prompt_template)
|
|
chain = prompt | self.llm_cheap | StrOutputParser()
|
|
output = chain.invoke({"text": text})
|
|
return output
|
|
|
|
|
|
def get_resume_html(self):
|
|
resume_markdown_prompt = ChatPromptTemplate.from_template(strings.resume_markdown_template)
|
|
fusion_job_description_resume_prompt = ChatPromptTemplate.from_template(strings.fusion_job_description_resume_template)
|
|
resume_markdown_chain = resume_markdown_prompt | self.llm_cheap | StrOutputParser()
|
|
fusion_job_description_resume_chain = fusion_job_description_resume_prompt | self.llm_cheap | StrOutputParser()
|
|
|
|
casual_markdown_path = os.path.abspath("resume_template/casual_markdown.js")
|
|
reorganize_header_path = os.path.abspath("resume_template/reorganizeHeader.js")
|
|
resume_css_path = os.path.abspath("resume_template/resume.css")
|
|
|
|
html_template = strings.html_template.format(casual_markdown=casual_markdown_path, reorganize_header=reorganize_header_path, resume_css=resume_css_path)
|
|
composed_chain = (
|
|
resume_markdown_chain
|
|
| (lambda output: {"job_description": self.job.summarize_job_description, "formatted_resume": output})
|
|
| fusion_job_description_resume_chain
|
|
| (lambda formatted_resume: html_template + formatted_resume)
|
|
)
|
|
try:
|
|
output = composed_chain.invoke({
|
|
"resume": self.resume,
|
|
"job_description": self.job.summarize_job_description
|
|
})
|
|
return output
|
|
except Exception as e:
|
|
#print(f"Error during elaboration: {e}")
|
|
pass
|
|
|
|
|
|
def _create_chain(self, template: str):
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
return prompt | self.llm_cheap | StrOutputParser()
|
|
|
|
def answer_question_textual_wide_range(self, question: str) -> str:
|
|
# Define chains for each section of the resume
|
|
self.chains = {
|
|
"personal_information": self._create_chain(strings.personal_information_template),
|
|
"self_identification": self._create_chain(strings.self_identification_template),
|
|
"legal_authorization": self._create_chain(strings.legal_authorization_template),
|
|
"work_preferences": self._create_chain(strings.work_preferences_template),
|
|
"education_details": self._create_chain(strings.education_details_template),
|
|
"experience_details": self._create_chain(strings.experience_details_template),
|
|
"projects": self._create_chain(strings.projects_template),
|
|
"availability": self._create_chain(strings.availability_template),
|
|
"salary_expectations": self._create_chain(strings.salary_expectations_template),
|
|
"certifications": self._create_chain(strings.certifications_template),
|
|
"languages": self._create_chain(strings.languages_template),
|
|
"interests": self._create_chain(strings.interests_template),
|
|
}
|
|
section_prompt = (
|
|
f"For the following question: '{question}', which section of the resume is relevant? "
|
|
"Respond with one of the following: Personal information, Self Identification, Legal Authorization, "
|
|
"Work Preferences, Education Details, Experience Details, Projects, Availability, Salary Expectations, "
|
|
"Certifications, Languages, Interests."
|
|
)
|
|
|
|
prompt = ChatPromptTemplate.from_template(section_prompt)
|
|
chain = prompt | self.llm_cheap | StrOutputParser()
|
|
output = chain.invoke({"question": question})
|
|
section_name = output.lower().replace(" ", "_")
|
|
|
|
resume_section = getattr(self.resume, section_name, None)
|
|
if resume_section is None:
|
|
raise ValueError(f"Section '{section_name}' not found in the resume.")
|
|
|
|
# Use the corresponding chain to answer the question
|
|
chain = self.chains.get(section_name)
|
|
if chain is None:
|
|
raise ValueError(f"Chain not defined for section '{section_name}'")
|
|
output_str = chain.invoke({"resume_section": resume_section, "question": question})
|
|
return output_str
|
|
|
|
def answer_question_textual(self, question: str) -> str:
|
|
template = self._preprocess_template_string(strings.resume_stuff_template)
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
chain = prompt | self.llm_cheap | StrOutputParser()
|
|
output = chain.invoke({"resume": self.resume, "question": question})
|
|
return output
|
|
|
|
def answer_question_numeric(self, question: str, default_experience: int = 3) -> int:
|
|
func_template = self._preprocess_template_string(strings.numeric_question_template)
|
|
prompt = ChatPromptTemplate.from_template(func_template)
|
|
chain = prompt | self.llm_cheap | StrOutputParser()
|
|
output_str = chain.invoke({"resume": self.resume, "question": question, "default_experience": default_experience})
|
|
try:
|
|
output = self.extract_number_from_string(output_str)
|
|
except ValueError:
|
|
output = default_experience
|
|
return output
|
|
|
|
def extract_number_from_string(self, output_str):
|
|
numbers = re.findall(r"\d+", output_str)
|
|
if numbers:
|
|
return int(numbers[0])
|
|
else:
|
|
raise ValueError("No numbers found in the string")
|
|
|
|
def answer_question_from_options(self, question: str, options: list[str]) -> str:
|
|
func_template = self._preprocess_template_string(strings.options_template)
|
|
prompt = ChatPromptTemplate.from_template(func_template)
|
|
chain = prompt | self.llm_cheap | StrOutputParser()
|
|
output_str = chain.invoke({"resume": self.resume, "question": question, "options": options})
|
|
best_option = self.find_best_match(output_str, options)
|
|
return best_option
|