228 lines
10 KiB
Python
228 lines
10 KiB
Python
import csv
|
|
import os
|
|
import random
|
|
import time
|
|
import traceback
|
|
from itertools import product
|
|
from pathlib import Path
|
|
|
|
from selenium.common.exceptions import NoSuchElementException
|
|
from selenium.webdriver.common.by import By
|
|
|
|
import utils
|
|
from job import Job
|
|
from linkedIn_easy_applier import LinkedInEasyApplier
|
|
|
|
|
|
class EnvironmentKeys:
|
|
def __init__(self):
|
|
self.skip_apply = self._read_env_key_bool("SKIP_APPLY")
|
|
self.disable_description_filter = self._read_env_key_bool("DISABLE_DESCRIPTION_FILTER")
|
|
|
|
@staticmethod
|
|
def _read_env_key(key: str) -> str:
|
|
return os.getenv(key, "")
|
|
|
|
@staticmethod
|
|
def _read_env_key_bool(key: str) -> bool:
|
|
return os.getenv(key) == "True"
|
|
|
|
class LinkedInJobManager:
|
|
def __init__(self, driver):
|
|
self.driver = driver
|
|
self.set_old_answers = set()
|
|
self.easy_applier_component = None
|
|
|
|
def set_parameters(self, parameters):
|
|
self.company_blacklist = parameters.get('companyBlacklist', []) or []
|
|
self.title_blacklist = parameters.get('titleBlacklist', []) or []
|
|
self.positions = parameters.get('positions', [])
|
|
self.locations = parameters.get('locations', [])
|
|
self.base_search_url = self.get_base_search_url(parameters)
|
|
self.seen_jobs = []
|
|
resume_path = parameters.get('uploads', {}).get('resume', None)
|
|
if resume_path is not None and Path(resume_path).exists():
|
|
self.resume_dir = Path(resume_path)
|
|
else:
|
|
self.resume_dir = None
|
|
self.output_file_directory = Path(parameters['outputFileDirectory'])
|
|
self.env_config = EnvironmentKeys()
|
|
self.old_question()
|
|
|
|
def set_gpt_answerer(self, gpt_answerer):
|
|
self.gpt_answerer = gpt_answerer
|
|
|
|
def old_question(self):
|
|
"""
|
|
Load old answers from a CSV file into a dictionary.
|
|
"""
|
|
self.set_old_answers = {}
|
|
file_path = 'data_folder/output/old_Questions.csv'
|
|
if os.path.exists(file_path):
|
|
with open(file_path, 'r', newline='', encoding='utf-8', errors='ignore') as file:
|
|
csv_reader = csv.reader(file, delimiter=',', quotechar='"')
|
|
for row in csv_reader:
|
|
if len(row) == 3:
|
|
answer_type, question_text, answer = row
|
|
self.set_old_answers[(answer_type.lower(), question_text.lower())] = answer
|
|
|
|
|
|
def start_applying(self):
|
|
self.easy_applier_component = LinkedInEasyApplier(
|
|
self.driver, self.resume_dir, self.set_old_answers, self.gpt_answerer
|
|
)
|
|
searches = list(product(self.positions, self.locations))
|
|
random.shuffle(searches)
|
|
page_sleep = 0
|
|
minimum_time = 60 * 15
|
|
minimum_page_time = time.time() + minimum_time
|
|
|
|
for position, location in searches:
|
|
location_url = "&location=" + location
|
|
job_page_number = -1
|
|
utils.printyellow(f"Starting the search for {position} in {location}.")
|
|
|
|
try:
|
|
while True:
|
|
page_sleep += 1
|
|
job_page_number += 1
|
|
utils.printyellow(f"Going to job page {job_page_number}")
|
|
self.next_job_page(position, location_url, job_page_number)
|
|
time.sleep(random.uniform(1.5, 3.5))
|
|
utils.printyellow("Starting the application process for this page...")
|
|
self.apply_jobs()
|
|
utils.printyellow("Applying to jobs on this page has been completed!")
|
|
|
|
time_left = minimum_page_time - time.time()
|
|
if time_left > 0:
|
|
utils.printyellow(f"Sleeping for {time_left} seconds.")
|
|
time.sleep(time_left)
|
|
minimum_page_time = time.time() + minimum_time
|
|
if page_sleep % 5 == 0:
|
|
sleep_time = random.randint(5, 34)
|
|
utils.printyellow(f"Sleeping for {sleep_time / 60} minutes.")
|
|
time.sleep(sleep_time)
|
|
page_sleep += 1
|
|
except Exception:
|
|
traceback.format_exc()
|
|
pass
|
|
|
|
time_left = minimum_page_time - time.time()
|
|
if time_left > 0:
|
|
utils.printyellow(f"Sleeping for {time_left} seconds.")
|
|
time.sleep(time_left)
|
|
minimum_page_time = time.time() + minimum_time
|
|
if page_sleep % 5 == 0:
|
|
sleep_time = random.randint(50, 90)
|
|
utils.printyellow(f"Sleeping for {sleep_time / 60} minutes.")
|
|
time.sleep(sleep_time)
|
|
page_sleep += 1
|
|
|
|
def apply_jobs(self):
|
|
try:
|
|
try:
|
|
no_jobs_element = self.driver.find_element(By.CLASS_NAME, 'jobs-search-two-pane__no-results-banner--expand')
|
|
if 'No matching jobs found' in no_jobs_element.text or 'unfortunately, things aren' in self.driver.page_source.lower():
|
|
raise Exception("No more jobs on this page")
|
|
except NoSuchElementException:
|
|
pass
|
|
|
|
job_results = self.driver.find_element(By.CLASS_NAME, "jobs-search-results-list")
|
|
utils.scroll_slow(self.driver, job_results)
|
|
utils.scroll_slow(self.driver, job_results, step=300, reverse=True)
|
|
|
|
job_list_elements = self.driver.find_elements(By.CLASS_NAME, 'scaffold-layout__list-container')[0].find_elements(By.CLASS_NAME, 'jobs-search-results__list-item')
|
|
|
|
if not job_list_elements:
|
|
raise Exception("No job class elements found on page")
|
|
|
|
job_list = [Job(*self.extract_job_information_from_tile(job_element)) for job_element in job_list_elements]
|
|
|
|
for job in job_list:
|
|
if self.is_blacklisted(job.title, job.company, job.link):
|
|
utils.printyellow(f"Blacklisted {job.title} at {job.company}, skipping...")
|
|
self.write_to_file(job.company, job.location, job.title, job.link, "skipped")
|
|
continue
|
|
|
|
try:
|
|
if job.apply_method not in {"Continue", "Applied", "Apply"}:
|
|
self.easy_applier_component.job_apply(job)
|
|
except Exception as e:
|
|
utils.printred(traceback.format_exc())
|
|
self.write_to_file(job.company, job.location, job.title, job.link, "failed")
|
|
continue
|
|
self.write_to_file(job.company, job.location, job.title, job.link, "success")
|
|
|
|
except Exception as e:
|
|
traceback.format_exc()
|
|
raise e
|
|
|
|
def write_to_file(self, company, job_title, link, job_location, file_name):
|
|
to_write = [company, job_title, link, job_location]
|
|
file_path = self.output_file_directory / f"{file_name}.csv"
|
|
with open(file_path, 'a', newline='', encoding='utf-8') as f:
|
|
writer = csv.writer(f)
|
|
writer.writerow(to_write)
|
|
|
|
def record_gpt_answer(self, answer_type, question_text, gpt_response):
|
|
to_write = [answer_type, question_text, gpt_response]
|
|
file_path = self.output_file_directory / "registered_jobs.csv"
|
|
try:
|
|
with open(file_path, 'a', newline='', encoding='utf-8') as f:
|
|
writer = csv.writer(f)
|
|
writer.writerow(to_write)
|
|
except Exception as e:
|
|
utils.printred(f"Error writing registered job: {e}")
|
|
utils.printred(f"Details: Answer type: {answer_type}, Question: {question_text}")
|
|
|
|
def get_base_search_url(self, parameters):
|
|
remote_url = "f_CF=f_WRA" if parameters['remote'] else ""
|
|
experience_url = "f_E=" + "%2C".join(
|
|
str(i+1) for i, v in enumerate(parameters.get('experienceLevel', [])) if v
|
|
)
|
|
distance_url = "?distance=" + str(parameters['distance'])
|
|
job_types_url = "f_JT=" + "%2C".join(
|
|
k[0].upper() for k, v in parameters.get('experienceLevel', {}).items() if v
|
|
)
|
|
date_url = next(
|
|
(v for k, v in {
|
|
"all time": "", "month": "&f_TPR=r2592000", "week": "&f_TPR=r604800", "24 hours": "&f_TPR=r86400"
|
|
}.items() if parameters.get('date', {}).get(k)), ""
|
|
)
|
|
easy_apply_url = "&f_LF=f_AL"
|
|
return f"{distance_url}&{remote_url}&{job_types_url}&{experience_url}{easy_apply_url}{date_url}"
|
|
|
|
def next_job_page(self, position, location, job_page):
|
|
self.driver.get(f"https://www.linkedin.com/jobs/search/{self.base_search_url}&keywords={position}{location}&start={job_page * 25}")
|
|
|
|
def extract_job_information_from_tile(self, job_tile):
|
|
job_title, company, job_location, apply_method, link = "", "", "", "", ""
|
|
try:
|
|
job_title = job_tile.find_element(By.CLASS_NAME, 'job-card-list__title').text
|
|
link = job_tile.find_element(By.CLASS_NAME, 'job-card-list__title').get_attribute('href').split('?')[0]
|
|
company = job_tile.find_element(By.CLASS_NAME, 'job-card-container__primary-description').text
|
|
except:
|
|
pass
|
|
try:
|
|
hiring_line = job_tile.find_element(By.XPATH, '//span[contains(.,\' is hiring for this\')]')
|
|
hiring_line_text = hiring_line.text
|
|
name_terminating_index = hiring_line_text.find(' is hiring for this')
|
|
except:
|
|
pass
|
|
try:
|
|
job_location = job_tile.find_element(By.CLASS_NAME, 'job-card-container__metadata-item').text
|
|
except:
|
|
pass
|
|
try:
|
|
apply_method = job_tile.find_element(By.CLASS_NAME, 'job-card-container__apply-method').text
|
|
except:
|
|
apply_method = "Applied"
|
|
|
|
return job_title, company, job_location, link, apply_method
|
|
|
|
def is_blacklisted(self, job_title, company, link):
|
|
job_title_words = job_title.lower().split(' ')
|
|
title_blacklisted = any(word in job_title_words for word in self.title_blacklist)
|
|
company_blacklisted = company.strip().lower() in (word.strip().lower() for word in self.company_blacklist)
|
|
link_seen = link in self.seen_jobs
|
|
return title_blacklisted or company_blacklisted or link_seen |