216 lines
9.9 KiB
Python
216 lines
9.9 KiB
Python
import os
|
|
import re
|
|
import sys
|
|
from pathlib import Path
|
|
import yaml
|
|
import click
|
|
from selenium import webdriver
|
|
from selenium.webdriver.chrome.service import Service as ChromeService
|
|
from webdriver_manager.chrome import ChromeDriverManager
|
|
from selenium.common.exceptions import WebDriverException, TimeoutException
|
|
from lib_resume_builder_AIHawk import Resume,StyleManager,FacadeManager,ResumeGenerator
|
|
from utils import chromeBrowserOptions
|
|
from gpt import GPTAnswerer
|
|
from linkedIn_authenticator import LinkedInAuthenticator
|
|
from linkedIn_bot_facade import LinkedInBotFacade
|
|
from linkedIn_job_manager import LinkedInJobManager
|
|
from job_application_profile import JobApplicationProfile
|
|
|
|
# Suppress stderr
|
|
sys.stderr = open(os.devnull, 'w')
|
|
|
|
class ConfigError(Exception):
|
|
pass
|
|
|
|
class ConfigValidator:
|
|
@staticmethod
|
|
def validate_email(email: str) -> bool:
|
|
return re.match(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$', email) is not None
|
|
|
|
@staticmethod
|
|
def validate_yaml_file(yaml_path: Path) -> dict:
|
|
try:
|
|
with open(yaml_path, 'r') as stream:
|
|
return yaml.safe_load(stream)
|
|
except yaml.YAMLError as exc:
|
|
raise ConfigError(f"Error reading file {yaml_path}: {exc}")
|
|
except FileNotFoundError:
|
|
raise ConfigError(f"File not found: {yaml_path}")
|
|
|
|
@staticmethod
|
|
def validate_config(config_yaml_path: Path) -> dict:
|
|
parameters = ConfigValidator.validate_yaml_file(config_yaml_path)
|
|
|
|
required_keys = {
|
|
'remote': bool,
|
|
'experienceLevel': dict,
|
|
'jobTypes': dict,
|
|
'date': dict,
|
|
'positions': list,
|
|
'locations': list,
|
|
'distance': int,
|
|
'companyBlacklist': list,
|
|
'titleBlacklist': list
|
|
}
|
|
|
|
for key, expected_type in required_keys.items():
|
|
if key not in parameters or not isinstance(parameters[key], expected_type):
|
|
raise ConfigError(f"Missing or invalid key '{key}' in config file {config_yaml_path}")
|
|
|
|
experience_levels = ['internship', 'entry', 'associate', 'mid-senior level', 'director', 'executive']
|
|
for level in experience_levels:
|
|
if not isinstance(parameters['experienceLevel'].get(level), bool):
|
|
raise ConfigError(f"Experience level '{level}' must be a boolean in config file {config_yaml_path}")
|
|
|
|
job_types = ['full-time', 'contract', 'part-time', 'temporary', 'internship', 'other', 'volunteer']
|
|
for job_type in job_types:
|
|
if not isinstance(parameters['jobTypes'].get(job_type), bool):
|
|
raise ConfigError(f"Job type '{job_type}' must be a boolean in config file {config_yaml_path}")
|
|
|
|
date_filters = ['all time', 'month', 'week', '24 hours']
|
|
for date_filter in date_filters:
|
|
if not isinstance(parameters['date'].get(date_filter), bool):
|
|
raise ConfigError(f"Date filter '{date_filter}' must be a boolean in config file {config_yaml_path}")
|
|
|
|
if not all(isinstance(pos, str) for pos in parameters['positions']):
|
|
raise ConfigError(f"'positions' must be a list of strings in config file {config_yaml_path}")
|
|
if not all(isinstance(loc, str) for loc in parameters['locations']):
|
|
raise ConfigError(f"'locations' must be a list of strings in config file {config_yaml_path}")
|
|
|
|
approved_distances = {0, 5, 10, 25, 50, 100}
|
|
if parameters['distance'] not in approved_distances:
|
|
raise ConfigError(f"Invalid distance value in config file {config_yaml_path}. Must be one of: {approved_distances}")
|
|
|
|
for blacklist in ['companyBlacklist', 'titleBlacklist']:
|
|
if not all(isinstance(item, str) for item in parameters.get(blacklist, [])):
|
|
parameters[blacklist] = []
|
|
|
|
return parameters
|
|
|
|
@staticmethod
|
|
def validate_secrets(secrets_yaml_path: Path) -> tuple:
|
|
secrets = ConfigValidator.validate_yaml_file(secrets_yaml_path)
|
|
mandatory_secrets = ['email', 'password', 'openai_api_key']
|
|
|
|
for secret in mandatory_secrets:
|
|
if secret not in secrets:
|
|
raise ConfigError(f"Missing secret '{secret}' in file {secrets_yaml_path}")
|
|
|
|
if not ConfigValidator.validate_email(secrets['email']):
|
|
raise ConfigError(f"Invalid email format in secrets file {secrets_yaml_path}.")
|
|
if not secrets['password']:
|
|
raise ConfigError(f"Password cannot be empty in secrets file {secrets_yaml_path}.")
|
|
if not secrets['openai_api_key']:
|
|
raise ConfigError(f"OpenAI API key cannot be empty in secrets file {secrets_yaml_path}.")
|
|
|
|
return secrets['email'], str(secrets['password']), secrets['openai_api_key']
|
|
|
|
class FileManager:
|
|
@staticmethod
|
|
def find_file(name_containing: str, with_extension: str, at_path: Path) -> Path:
|
|
return next((file for file in at_path.iterdir() if name_containing.lower() in file.name.lower() and file.suffix.lower() == with_extension.lower()), None)
|
|
|
|
@staticmethod
|
|
def validate_data_folder(app_data_folder: Path) -> tuple:
|
|
if not app_data_folder.exists() or not app_data_folder.is_dir():
|
|
raise FileNotFoundError(f"Data folder not found: {app_data_folder}")
|
|
|
|
required_files = ['secrets.yaml', 'config.yaml', 'plain_text_resume.yaml']
|
|
missing_files = [file for file in required_files if not (app_data_folder / file).exists()]
|
|
|
|
if missing_files:
|
|
raise FileNotFoundError(f"Missing files in the data folder: {', '.join(missing_files)}")
|
|
|
|
output_folder = app_data_folder / 'output'
|
|
output_folder.mkdir(exist_ok=True)
|
|
return (app_data_folder / 'secrets.yaml', app_data_folder / 'config.yaml', app_data_folder / 'plain_text_resume.yaml', output_folder)
|
|
|
|
@staticmethod
|
|
def file_paths_to_dict(resume_file: Path | None, plain_text_resume_file: Path) -> dict:
|
|
if not plain_text_resume_file.exists():
|
|
raise FileNotFoundError(f"Plain text resume file not found: {plain_text_resume_file}")
|
|
|
|
result = {'plainTextResume': plain_text_resume_file}
|
|
|
|
if resume_file:
|
|
if not resume_file.exists():
|
|
raise FileNotFoundError(f"Resume file not found: {resume_file}")
|
|
result['resume'] = resume_file
|
|
|
|
return result
|
|
|
|
def init_browser() -> webdriver.Chrome:
|
|
try:
|
|
options = chromeBrowserOptions()
|
|
service = ChromeService(ChromeDriverManager().install())
|
|
return webdriver.Chrome(service=service, options=options)
|
|
except Exception as e:
|
|
raise RuntimeError(f"Failed to initialize browser: {str(e)}")
|
|
|
|
def create_and_run_bot(email: str, password: str, parameters: dict, openai_api_key: str):
|
|
try:
|
|
browser = init_browser()
|
|
|
|
login_component = LinkedInAuthenticator(browser)
|
|
apply_component = LinkedInJobManager(browser)
|
|
gpt_answerer_component = GPTAnswerer(openai_api_key)
|
|
|
|
with open(parameters['uploads']['plainTextResume'], "r") as file:
|
|
plain_text_resume = file.read()
|
|
|
|
resume_object = Resume(plain_text_resume)
|
|
job_application_profile_object = JobApplicationProfile(plain_text_resume)
|
|
|
|
style_manager = StyleManager()
|
|
resume_generator = ResumeGenerator()
|
|
resume_generator_manager = FacadeManager(openai_api_key, style_manager, resume_generator, resume_object, Path("data_folder/output"))
|
|
|
|
os.system('cls' if os.name == 'nt' else 'clear')
|
|
resume_generator_manager.choose_style()
|
|
|
|
bot = LinkedInBotFacade(login_component, apply_component)
|
|
bot.set_secrets(email, password)
|
|
bot.set_job_application_profile_and_resume(job_application_profile_object, resume_object)
|
|
bot.set_gpt_answerer_and_resume_generator(gpt_answerer_component, resume_generator_manager)
|
|
bot.set_parameters(parameters)
|
|
bot.start_login()
|
|
bot.start_apply()
|
|
except WebDriverException as e:
|
|
print(f"WebDriver error occurred: {e}")
|
|
except Exception as e:
|
|
raise RuntimeError(f"Error running the bot: {str(e)}")
|
|
|
|
|
|
@click.command()
|
|
@click.option('--resume', type=click.Path(exists=True, file_okay=True, dir_okay=False, path_type=Path), help="Path to the resume PDF file")
|
|
def main(resume: Path = None):
|
|
try:
|
|
data_folder = Path("data_folder")
|
|
secrets_file, config_file, plain_text_resume_file, output_folder = FileManager.validate_data_folder(data_folder)
|
|
|
|
parameters = ConfigValidator.validate_config(config_file)
|
|
email, password, openai_api_key = ConfigValidator.validate_secrets(secrets_file)
|
|
|
|
parameters['uploads'] = FileManager.file_paths_to_dict(resume, plain_text_resume_file)
|
|
parameters['outputFileDirectory'] = output_folder
|
|
|
|
create_and_run_bot(email, password, parameters, openai_api_key)
|
|
except ConfigError as ce:
|
|
print(f"Configuration error: {str(ce)}")
|
|
print("Refer to the configuration guide for troubleshooting: https://github.com/feder-cr/LinkedIn_AIHawk_automatic_job_application/blob/main/readme.md#configuration")
|
|
except FileNotFoundError as fnf:
|
|
print(f"File not found: {str(fnf)}")
|
|
print("Ensure all required files are present in the data folder.")
|
|
print("Refer to the file setup guide: https://github.com/feder-cr/LinkedIn_AIHawk_automatic_job_application/blob/main/readme.md#configuration")
|
|
except RuntimeError as re:
|
|
|
|
print(f"Runtime error: {str(re)}")
|
|
|
|
print("Refer to the configuration and troubleshooting guide: https://github.com/feder-cr/LinkedIn_AIHawk_automatic_job_application/blob/main/readme.md#configuration")
|
|
except Exception as e:
|
|
print(f"An unexpected error occurred: {str(e)}")
|
|
print("Refer to the general troubleshooting guide: https://github.com/feder-cr/LinkedIn_AIHawk_automatic_job_application/blob/main/readme.md#configuration")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|