221 lines
9.7 KiB
Python
221 lines
9.7 KiB
Python
import os
|
|
import random
|
|
import time
|
|
import traceback
|
|
from itertools import product
|
|
from pathlib import Path
|
|
from selenium.common.exceptions import NoSuchElementException
|
|
from selenium.webdriver.common.by import By
|
|
import utils
|
|
from job import Job
|
|
from linkedIn_easy_applier import LinkedInEasyApplier
|
|
import json
|
|
|
|
|
|
class EnvironmentKeys:
|
|
def __init__(self):
|
|
self.skip_apply = self._read_env_key_bool("SKIP_APPLY")
|
|
self.disable_description_filter = self._read_env_key_bool("DISABLE_DESCRIPTION_FILTER")
|
|
|
|
@staticmethod
|
|
def _read_env_key(key: str) -> str:
|
|
return os.getenv(key, "")
|
|
|
|
@staticmethod
|
|
def _read_env_key_bool(key: str) -> bool:
|
|
return os.getenv(key) == "True"
|
|
|
|
class LinkedInJobManager:
|
|
def __init__(self, driver):
|
|
self.driver = driver
|
|
self.set_old_answers = set()
|
|
self.easy_applier_component = None
|
|
|
|
def set_parameters(self, parameters):
|
|
self.company_blacklist = parameters.get('companyBlacklist', []) or []
|
|
self.title_blacklist = parameters.get('titleBlacklist', []) or []
|
|
self.positions = parameters.get('positions', [])
|
|
self.locations = parameters.get('locations', [])
|
|
self.base_search_url = self.get_base_search_url(parameters)
|
|
self.seen_jobs = []
|
|
resume_path = parameters.get('uploads', {}).get('resume', None)
|
|
if resume_path is not None and Path(resume_path).exists():
|
|
self.resume_path = Path(resume_path)
|
|
else:
|
|
self.resume_path = None
|
|
self.output_file_directory = Path(parameters['outputFileDirectory'])
|
|
self.env_config = EnvironmentKeys()
|
|
#self.old_question()
|
|
|
|
def set_gpt_answerer(self, gpt_answerer):
|
|
self.gpt_answerer = gpt_answerer
|
|
|
|
def set_resume_generator_manager(self, resume_generator_manager):
|
|
self.resume_generator_manager = resume_generator_manager
|
|
|
|
""" def old_question(self):
|
|
self.set_old_answers = {}
|
|
file_path = 'data_folder/output/old_Questions.csv'
|
|
if os.path.exists(file_path):
|
|
with open(file_path, 'r', newline='', encoding='utf-8', errors='ignore') as file:
|
|
csv_reader = csv.reader(file, delimiter=',', quotechar='"')
|
|
for row in csv_reader:
|
|
if len(row) == 3:
|
|
answer_type, question_text, answer = row
|
|
self.set_old_answers[(answer_type.lower(), question_text.lower())] = answer"""
|
|
|
|
|
|
def start_applying(self):
|
|
self.easy_applier_component = LinkedInEasyApplier(self.driver, self.resume_path, self.set_old_answers, self.gpt_answerer, self.resume_generator_manager)
|
|
searches = list(product(self.positions, self.locations))
|
|
random.shuffle(searches)
|
|
page_sleep = 0
|
|
minimum_time = 60 * 15
|
|
minimum_page_time = time.time() + minimum_time
|
|
|
|
for position, location in searches:
|
|
location_url = "&location=" + location
|
|
job_page_number = -1
|
|
utils.printyellow(f"Starting the search for {position} in {location}.")
|
|
|
|
try:
|
|
while True:
|
|
page_sleep += 1
|
|
job_page_number += 1
|
|
utils.printyellow(f"Going to job page {job_page_number}")
|
|
self.next_job_page(position, location_url, job_page_number)
|
|
time.sleep(random.uniform(1.5, 3.5))
|
|
utils.printyellow("Starting the application process for this page...")
|
|
self.apply_jobs()
|
|
utils.printyellow("Applying to jobs on this page has been completed!")
|
|
|
|
time_left = minimum_page_time - time.time()
|
|
if time_left > 0:
|
|
utils.printyellow(f"Sleeping for {time_left} seconds.")
|
|
time.sleep(time_left)
|
|
minimum_page_time = time.time() + minimum_time
|
|
if page_sleep % 5 == 0:
|
|
sleep_time = random.randint(5, 34)
|
|
utils.printyellow(f"Sleeping for {sleep_time / 60} minutes.")
|
|
time.sleep(sleep_time)
|
|
page_sleep += 1
|
|
except Exception:
|
|
traceback.format_exc()
|
|
pass
|
|
time_left = minimum_page_time - time.time()
|
|
if time_left > 0:
|
|
utils.printyellow(f"Sleeping for {time_left} seconds.")
|
|
time.sleep(time_left)
|
|
minimum_page_time = time.time() + minimum_time
|
|
if page_sleep % 5 == 0:
|
|
sleep_time = random.randint(50, 90)
|
|
utils.printyellow(f"Sleeping for {sleep_time / 60} minutes.")
|
|
time.sleep(sleep_time)
|
|
page_sleep += 1
|
|
|
|
def apply_jobs(self):
|
|
try:
|
|
no_jobs_element = self.driver.find_element(By.CLASS_NAME, 'jobs-search-two-pane__no-results-banner--expand')
|
|
if 'No matching jobs found' in no_jobs_element.text or 'unfortunately, things aren' in self.driver.page_source.lower():
|
|
raise Exception("No more jobs on this page")
|
|
except NoSuchElementException:
|
|
pass
|
|
|
|
job_results = self.driver.find_element(By.CLASS_NAME, "jobs-search-results-list")
|
|
utils.scroll_slow(self.driver, job_results)
|
|
utils.scroll_slow(self.driver, job_results, step=300, reverse=True)
|
|
job_list_elements = self.driver.find_elements(By.CLASS_NAME, 'scaffold-layout__list-container')[0].find_elements(By.CLASS_NAME, 'jobs-search-results__list-item')
|
|
if not job_list_elements:
|
|
raise Exception("No job class elements found on page")
|
|
job_list = [Job(*self.extract_job_information_from_tile(job_element)) for job_element in job_list_elements]
|
|
for job in job_list:
|
|
if self.is_blacklisted(job.title, job.company, job.link):
|
|
utils.printyellow(f"Blacklisted {job.title} at {job.company}, skipping...")
|
|
self.write_to_file(job, "skipped")
|
|
continue
|
|
try:
|
|
if job.apply_method not in {"Continue", "Applied", "Apply"}:
|
|
self.easy_applier_component.job_apply(job)
|
|
self.write_to_file(job, "success")
|
|
except Exception as e:
|
|
utils.printred(traceback.format_exc())
|
|
self.write_to_file(job, "failed")
|
|
continue
|
|
|
|
|
|
|
|
def write_to_file(self, job, file_name):
|
|
pdf_path = Path(job.pdf_path).resolve()
|
|
pdf_path = pdf_path.as_uri()
|
|
data = {
|
|
"company": job.company,
|
|
"job_title": job.title,
|
|
"link": job.link,
|
|
"job_location": job.location,
|
|
"pdf_path": pdf_path
|
|
}
|
|
file_path = self.output_file_directory / f"{file_name}.json"
|
|
if not file_path.exists():
|
|
with open(file_path, 'w', encoding='utf-8') as f:
|
|
json.dump([data], f, indent=4)
|
|
else:
|
|
with open(file_path, 'r+', encoding='utf-8') as f:
|
|
try:
|
|
existing_data = json.load(f)
|
|
except json.JSONDecodeError:
|
|
existing_data = []
|
|
existing_data.append(data)
|
|
f.seek(0)
|
|
json.dump(existing_data, f, indent=4)
|
|
f.truncate()
|
|
|
|
def get_base_search_url(self, parameters):
|
|
url_parts = []
|
|
if parameters['remote']:
|
|
url_parts.append("f_CF=f_WRA")
|
|
experience_levels = [str(i+1) for i, v in enumerate(parameters.get('experienceLevel', [])) if v]
|
|
if experience_levels:
|
|
url_parts.append(f"f_E={','.join(experience_levels)}")
|
|
url_parts.append(f"distance={parameters['distance']}")
|
|
job_types = [key[0].upper() for key, value in parameters.get('jobTypes', {}).items() if value]
|
|
if job_types:
|
|
url_parts.append(f"f_JT={','.join(job_types)}")
|
|
date_mapping = {
|
|
"all time": "",
|
|
"month": "&f_TPR=r2592000",
|
|
"week": "&f_TPR=r604800",
|
|
"24 hours": "&f_TPR=r86400"
|
|
}
|
|
date_param = next((v for k, v in date_mapping.items() if parameters.get('date', {}).get(k)), "")
|
|
url_parts.append("f_LF=f_AL") # Easy Apply
|
|
base_url = "&".join(url_parts)
|
|
return f"?{base_url}{date_param}"
|
|
|
|
def next_job_page(self, position, location, job_page):
|
|
self.driver.get(f"https://www.linkedin.com/jobs/search/{self.base_search_url}&keywords={position}{location}&start={job_page * 25}")
|
|
|
|
def extract_job_information_from_tile(self, job_tile):
|
|
job_title, company, job_location, apply_method, link = "", "", "", "", ""
|
|
try:
|
|
job_title = job_tile.find_element(By.CLASS_NAME, 'job-card-list__title').text
|
|
link = job_tile.find_element(By.CLASS_NAME, 'job-card-list__title').get_attribute('href').split('?')[0]
|
|
company = job_tile.find_element(By.CLASS_NAME, 'job-card-container__primary-description').text
|
|
except:
|
|
pass
|
|
try:
|
|
job_location = job_tile.find_element(By.CLASS_NAME, 'job-card-container__metadata-item').text
|
|
except:
|
|
pass
|
|
try:
|
|
apply_method = job_tile.find_element(By.CLASS_NAME, 'job-card-container__apply-method').text
|
|
except:
|
|
apply_method = "Applied"
|
|
|
|
return job_title, company, job_location, link, apply_method
|
|
|
|
def is_blacklisted(self, job_title, company, link):
|
|
job_title_words = job_title.lower().split(' ')
|
|
title_blacklisted = any(word in job_title_words for word in self.title_blacklist)
|
|
company_blacklisted = company.strip().lower() in (word.strip().lower() for word in self.company_blacklist)
|
|
link_seen = link in self.seen_jobs
|
|
return title_blacklisted or company_blacklisted or link_seen |