import json import os import re import textwrap from datetime import datetime from typing import Dict, List from dotenv import load_dotenv from langchain_core.messages.ai import AIMessage from langchain_core.output_parsers import StrOutputParser from langchain_core.prompt_values import StringPromptValue from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from Levenshtein import distance import strings load_dotenv() class LLMLogger: def __init__(self, llm: ChatOpenAI): self.llm = llm @staticmethod def log_request(prompts, parsed_reply: Dict[str, Dict]): calls_log = os.path.join(os.getcwd(), "open_ai_calls.json") if isinstance(prompts, StringPromptValue): prompts = prompts.text elif isinstance(prompts, Dict): # Convert prompts to a dictionary if they are not in the expected format prompts = { f"prompt_{i+1}": prompt.content for i, prompt in enumerate(prompts.messages) } else: prompts = { f"prompt_{i+1}": prompt.content for i, prompt in enumerate(prompts.messages) } current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # Extract token usage details from the response token_usage = parsed_reply["usage_metadata"] output_tokens = token_usage["output_tokens"] input_tokens = token_usage["input_tokens"] total_tokens = token_usage["total_tokens"] # Extract model details from the response model_name = parsed_reply["response_metadata"]["model_name"] prompt_price_per_token = 0.00000015 completion_price_per_token = 0.0000006 # Calculate the total cost of the API call total_cost = (input_tokens * prompt_price_per_token) + ( output_tokens * completion_price_per_token ) # Create a log entry with all relevant information log_entry = { "model": model_name, "time": current_time, "prompts": prompts, "replies": parsed_reply["content"], # Response content "total_tokens": total_tokens, "input_tokens": input_tokens, "output_tokens": output_tokens, "total_cost": total_cost, } # Write the log entry to the log file in JSON format with open(calls_log, "a", encoding="utf-8") as f: json_string = json.dumps(log_entry, ensure_ascii=False, indent=4) f.write(json_string + "\n") class LoggerChatModel: def __init__(self, llm: ChatOpenAI): self.llm = llm def __call__(self, messages: List[Dict[str, str]]) -> str: # Call the LLM with the provided messages and log the response. reply = self.llm(messages) parsed_reply = self.parse_llmresult(reply) LLMLogger.log_request(prompts=messages, parsed_reply=parsed_reply) return reply def parse_llmresult(self, llmresult: AIMessage) -> Dict[str, Dict]: # Parse the LLM result into a structured format. content = llmresult.content response_metadata = llmresult.response_metadata id_ = llmresult.id usage_metadata = llmresult.usage_metadata parsed_result = { "content": content, "response_metadata": { "model_name": response_metadata.get("model_name", ""), "system_fingerprint": response_metadata.get("system_fingerprint", ""), "finish_reason": response_metadata.get("finish_reason", ""), "logprobs": response_metadata.get("logprobs", None), }, "id": id_, "usage_metadata": { "input_tokens": usage_metadata.get("input_tokens", 0), "output_tokens": usage_metadata.get("output_tokens", 0), "total_tokens": usage_metadata.get("total_tokens", 0), }, } return parsed_result class GPTAnswerer: def __init__(self, openai_api_key): self.llm_cheap = LoggerChatModel( ChatOpenAI( model_name="gpt-4o-mini", openai_api_key=openai_api_key, temperature=0.8 ) ) @property def job_description(self): return self.job.description @staticmethod def find_best_match(text: str, options: list[str]) -> str: distances = [ (option, distance(text.lower(), option.lower())) for option in options ] best_option = min(distances, key=lambda x: x[1])[0] return best_option @staticmethod def _remove_placeholders(text: str) -> str: text = text.replace("PLACEHOLDER", "") return text.strip() @staticmethod def _preprocess_template_string(template: str) -> str: # Preprocess a template string to remove unnecessary indentation. return textwrap.dedent(template) def set_resume(self, resume): self.resume = resume def set_job(self, job): self.job = job self.job.set_summarize_job_description( self.summarize_job_description(self.job.description) ) def summarize_job_description(self, text: str) -> str: strings.summarize_prompt_template = self._preprocess_template_string( strings.summarize_prompt_template ) prompt = ChatPromptTemplate.from_template(strings.summarize_prompt_template) chain = prompt | self.llm_cheap | StrOutputParser() output = chain.invoke({"text": text}) return output def get_resume_html(self): resume_markdown_prompt = ChatPromptTemplate.from_template(strings.resume_markdown_template) fusion_job_description_resume_prompt = ChatPromptTemplate.from_template(strings.fusion_job_description_resume_template) resume_markdown_chain = resume_markdown_prompt | self.llm_cheap | StrOutputParser() fusion_job_description_resume_chain = fusion_job_description_resume_prompt | self.llm_cheap | StrOutputParser() casual_markdown_path = os.path.abspath("resume_template/casual_markdown.js") reorganize_header_path = os.path.abspath("resume_template/reorganizeHeader.js") resume_css_path = os.path.abspath("resume_template/resume.css") html_template = strings.html_template.format(casual_markdown=casual_markdown_path, reorganize_header=reorganize_header_path, resume_css=resume_css_path) composed_chain = ( resume_markdown_chain | (lambda output: {"job_description": self.job.summarize_job_description, "formatted_resume": output}) | fusion_job_description_resume_chain | (lambda formatted_resume: html_template + formatted_resume) ) try: output = composed_chain.invoke({ "resume": self.resume, "job_description": self.job.summarize_job_description }) return output except Exception as e: #print(f"Error during elaboration: {e}") pass def _create_chain(self, template: str): prompt = ChatPromptTemplate.from_template(template) return prompt | self.llm_cheap | StrOutputParser() def answer_question_textual_wide_range(self, question: str) -> str: # Define chains for each section of the resume self.chains = { "personal_information": self._create_chain(strings.personal_information_template), "self_identification": self._create_chain(strings.self_identification_template), "legal_authorization": self._create_chain(strings.legal_authorization_template), "work_preferences": self._create_chain(strings.work_preferences_template), "education_details": self._create_chain(strings.education_details_template), "experience_details": self._create_chain(strings.experience_details_template), "projects": self._create_chain(strings.projects_template), "availability": self._create_chain(strings.availability_template), "salary_expectations": self._create_chain(strings.salary_expectations_template), "certifications": self._create_chain(strings.certifications_template), "languages": self._create_chain(strings.languages_template), "interests": self._create_chain(strings.interests_template), } section_prompt = ( f"For the following question: '{question}', which section of the resume is relevant? " "Respond with one of the following: Personal information, Self Identification, Legal Authorization, " "Work Preferences, Education Details, Experience Details, Projects, Availability, Salary Expectations, " "Certifications, Languages, Interests." ) prompt = ChatPromptTemplate.from_template(section_prompt) chain = prompt | self.llm_cheap | StrOutputParser() output = chain.invoke({"question": question}) section_name = output.lower().replace(" ", "_") resume_section = getattr(self.resume, section_name, None) if resume_section is None: raise ValueError(f"Section '{section_name}' not found in the resume.") # Use the corresponding chain to answer the question chain = self.chains.get(section_name) if chain is None: raise ValueError(f"Chain not defined for section '{section_name}'") output_str = chain.invoke({"resume_section": resume_section, "question": question}) return output_str def answer_question_textual(self, question: str) -> str: template = self._preprocess_template_string(strings.resume_stuff_template) prompt = ChatPromptTemplate.from_template(template) chain = prompt | self.llm_cheap | StrOutputParser() output = chain.invoke({"resume": self.resume, "question": question}) return output def answer_question_numeric(self, question: str, default_experience: int = 3) -> int: func_template = self._preprocess_template_string(strings.numeric_question_template) prompt = ChatPromptTemplate.from_template(func_template) chain = prompt | self.llm_cheap | StrOutputParser() output_str = chain.invoke({"resume": self.resume, "question": question, "default_experience": default_experience}) try: output = self.extract_number_from_string(output_str) except ValueError: output = default_experience return output def extract_number_from_string(self, output_str): numbers = re.findall(r"\d+", output_str) if numbers: return int(numbers[0]) else: raise ValueError("No numbers found in the string") def answer_question_from_options(self, question: str, options: list[str]) -> str: func_template = self._preprocess_template_string(strings.options_template) prompt = ChatPromptTemplate.from_template(func_template) chain = prompt | self.llm_cheap | StrOutputParser() output_str = chain.invoke({"resume": self.resume, "question": question, "options": options}) best_option = self.find_best_match(output_str, options) return best_option