Adapter class added

This commit is contained in:
user 2024-09-01 11:59:43 +02:00
parent ca4f56833a
commit a9d9e13474
3 changed files with 70 additions and 20 deletions

View File

@ -211,11 +211,12 @@ This file defines your job search parameters and bot behavior. Each section cont
- Marketing
```
- `llm_model_type`:
- Choose the model type, supported: openai / ollama
- Choose the model type, supported: openai / ollama / claude
- `llm_model`:
- Choose the LLM model, currently supported:
- openai: gpt-4o
- ollama: llama2, mistral:v0.3
- claude: any model
- `llm_api_url`:
- Link of the API endpoint for the LLM model

View File

@ -40,7 +40,7 @@ companyBlacklist:
titleBlacklist:
- word1
- word2
llm_model_type: [openai / ollama]
llm_model: ['gpt-4o' / 'mistral:v0.3']
llm_api_url: [https://api.pawan.krd/cosmosrp/v1', http://127.0.0.1:11434/]
llm_model_type: [openai / ollama / claude]
llm_model: ['gpt-4o' / 'mistral:v0.3' / anymodel]
llm_api_url: [https://api.pawan.krd/cosmosrp/v1' / http://127.0.0.1:11434/]

View File

@ -3,6 +3,7 @@ import os
import re
import textwrap
from datetime import datetime
from abc import ABC, abstractmethod
from typing import Dict, List, Union
from pathlib import Path
from dotenv import load_dotenv
@ -11,17 +12,75 @@ from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompt_values import StringPromptValue
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain_ollama import ChatOllama
from Levenshtein import distance
import src.strings as strings
load_dotenv()
class AIModel(ABC):
@abstractmethod
def generate_response(self, prompt: str) -> str:
pass
class OpenAIModel(AIModel):
def __init__(self, api_key: str, llm_model: str, llm_api_url: str):
from langchain_openai import ChatOpenAI
self.model = ChatOpenAI(model_name=llm_model, openai_api_key=api_key,
temperature=0.4, base_url=llm_api_url)
def generate_response(self, prompt: str) -> str:
response = self.model.invoke(prompt)
return response.content
class ClaudeModel(AIModel):
def __init__(self, api_key: str, llm_model: str, llm_api_url: str):
from anthropic import Anthropic
self.client = Anthropic(api_key=api_key)
def generate_response(self, prompt: str) -> str:
formatted_prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = self.client.completions.create(
model="claude-2",
prompt=formatted_prompt,
max_tokens_to_sample=300
)
return response.completion.strip()
class OllamaModel(AIModel):
def __init__(self, api_key: str, llm_model: str, llm_api_url: str):
from langchain_ollama import ChatOllama
self.model = ChatOllama(model=llm_model, base_url=llm_api_url)
def generate_response(self, prompt: str) -> str:
response = self.model.invoke(prompt)
return response.content
class AIAdapter:
def __init__(self, config: dict, api_key: str):
self.model = self._create_model(config, api_key)
def _create_model(self, config: dict, api_key: str) -> AIModel:
llm_model_type = config['llm_model_type']
llm_model = config['llm_model']
llm_api_url = config['llm_api_url']
print('Using {0} with {1} from {2}'.format(llm_model_type, llm_model, llm_api_url))
if llm_model_type == "openai":
return OpenAIModel(api_key, llm_model, llm_api_url)
elif llm_model_type == "claude":
return ClaudeModel(api_key, llm_model, llm_api_url)
elif llm_model_type == "ollama":
return OllamaModel(api_key, llm_model, llm_api_url)
else:
raise ValueError(f"Unsupported model type: {model_type}")
def generate_response(self, prompt: str) -> str:
return self.model.generate_response(prompt)
class LLMLogger:
def __init__(self, llm: Union[ChatOpenAI, ChatOllama]):
def __init__(self, llm: Union[OpenAIModel, OllamaModel, ClaudeModel]):
self.llm = llm
@staticmethod
@ -79,7 +138,7 @@ class LLMLogger:
class LoggerChatModel:
def __init__(self, llm: Union[ChatOpenAI, ChatOllama]):
def __init__(self, llm: Union[OpenAIModel, OllamaModel, ClaudeModel]):
self.llm = llm
def __call__(self, messages: List[Dict[str, str]]) -> str:
@ -115,18 +174,8 @@ class LoggerChatModel:
class GPTAnswerer:
def __init__(self, config, llm_api_key):
llm_model_type = config['llm_model_type']
llm_model = config['llm_model']
llm_api_url = config['llm_api_url']
print('Using {0} with {1} from {2}'.format(llm_model_type, llm_model, llm_api_url))
if llm_model_type == "ollama":
self.llm_model = ChatOllama(model=llm_model, temperature = 0.4, base_url=llm_api_url)
elif llm_model_type == "openai":
self.llm_model = ChatOpenAI(model_name=llm_model, openai_api_key=llm_api_key, temperature=0.4,
base_url=llm_api_url)
self.llm_cheap = LoggerChatModel(self.llm_model)
self.ai_adapter = AIAdapter(config, llm_api_key)
self.llm_cheap = LoggerChatModel(self.ai_adapter)
@property
def job_description(self):
return self.job.description