diff --git a/linkedIn_easy_applier.py b/linkedIn_easy_applier.py index f51b578..48f8bf4 100644 --- a/linkedIn_easy_applier.py +++ b/linkedIn_easy_applier.py @@ -28,27 +28,23 @@ class LinkedInEasyApplier: self.set_old_answers = set_old_answers self.gpt_answerer = gpt_answerer self.resume_generator_manager = resume_generator_manager - self.questions_data = [] + self.all_data = self._load_questions_from_json() def _load_questions_from_json(self) -> List[dict]: output_file = 'answers.json' try: - # Leggi i dati esistenti dal file try: with open(output_file, 'r') as f: try: - all_data = json.load(f) - if not isinstance(all_data, list): + data = json.load(f) + if not isinstance(data, list): raise ValueError("JSON file format is incorrect. Expected a list of questions.") except json.JSONDecodeError: - # Se il file รจ vuoto o non contiene JSON valido, inizializza come lista vuota - all_data = [] + data = [] except FileNotFoundError: - # Se il file non esiste, inizializza come lista vuota - all_data = [] - - return all_data + data = [] + return data except Exception: tb_str = traceback.format_exc() raise Exception(f"Error loading questions data from JSON file: \nTraceback:\n{tb_str}") @@ -245,13 +241,22 @@ class LinkedInEasyApplier: if radios: question_text = section.text.lower() options = [radio.text.lower() for radio in radios] + + existing_answer = None + for item in self.all_data: + if self._sanitize_text(question_text) in item['question'] and item['type'] == 'radio': + existing_answer = item + break + if existing_answer: + self._select_radio(radios, existing_answer['answer']) + return True + answer = self.gpt_answerer.answer_question_from_options(question_text, options) - self._select_radio(radios, answer) self._save_questions_to_json({'type': 'radio', 'question': question_text, 'answer': answer}) + self._select_radio(radios, answer) return True return False - def _find_and_handle_textbox_question(self, section: WebElement) -> bool: text_fields = section.find_elements(By.TAG_NAME, 'input') + section.find_elements(By.TAG_NAME, 'textarea') if text_fields: @@ -259,13 +264,23 @@ class LinkedInEasyApplier: question_text = section.find_element(By.TAG_NAME, 'label').text.lower() is_numeric = self._is_numeric_field(text_field) if is_numeric: - answer = self.gpt_answerer.answer_question_numeric(question_text) question_type = 'numeric' + answer = self.gpt_answerer.answer_question_numeric(question_text) else: - answer = self.gpt_answerer.answer_question_textual_wide_range(question_text) question_type = 'textbox' - self._enter_text(text_field, answer) + answer = self.gpt_answerer.answer_question_textual_wide_range(question_text) + + + existing_answer = None + for item in self.all_data: + if item['question'] == self._sanitize_text(question_text) and item['type'] == question_type: + existing_answer = item + break + if existing_answer: + self._enter_text(text_field, existing_answer['answer']) + return True self._save_questions_to_json({'type': question_type, 'question': question_text, 'answer': answer}) + self._enter_text(text_field, answer) return True return False @@ -273,9 +288,22 @@ class LinkedInEasyApplier: date_fields = section.find_elements(By.CLASS_NAME, 'artdeco-datepicker__input ') if date_fields: date_field = date_fields[0] + question_text = section.text.lower() answer_date = self.gpt_answerer.answer_question_date() - self._enter_text(date_field, answer_date.strftime("%Y-%m-%d")) - self._save_questions_to_json({'type': 'date', 'question': section.text.lower(), 'answer': answer_date.strftime("%Y-%m-%d")}) + answer_text = answer_date.strftime("%Y-%m-%d") + + + existing_answer = None + for item in self.all_data: + if self._sanitize_text(question_text) in item['question'] and item['type'] == 'date': + existing_answer = item + break + if existing_answer: + self._enter_text(date_field, existing_answer['answer']) + return True + + self._save_questions_to_json({'type': 'date', 'question': question_text, 'answer': answer_text}) + self._enter_text(date_field, answer_text) return True return False @@ -287,9 +315,19 @@ class LinkedInEasyApplier: if dropdown: select = Select(dropdown) options = [option.text for option in select.options] + + existing_answer = None + for item in self.all_data: + if self._sanitize_text(question_text) in item['question'] and item['type'] == 'dropdown': + existing_answer = item + break + if existing_answer: + self._select_dropdown_option(dropdown, existing_answer['answer']) + return True + answer = self.gpt_answerer.answer_question_from_options(question_text, options) - self._select_dropdown_option(dropdown, answer) self._save_questions_to_json({'type': 'dropdown', 'question': question_text, 'answer': answer}) + self._select_dropdown_option(dropdown, answer) return True except Exception: return False @@ -323,22 +361,21 @@ class LinkedInEasyApplier: try: with open(output_file, 'r') as f: try: - all_data = json.load(f) - if not isinstance(all_data, list): + data = json.load(f) + if not isinstance(data, list): raise ValueError("JSON file format is incorrect. Expected a list of questions.") except json.JSONDecodeError: - all_data = [] + data = [] except FileNotFoundError: - all_data = [] - all_data.append(question_data) + data = [] + data.append(question_data) with open(output_file, 'w') as f: - json.dump(all_data, f, indent=4) + json.dump(data, f, indent=4) except Exception: tb_str = traceback.format_exc() raise Exception(f"Error saving questions data to JSON file: \nTraceback:\n{tb_str}") - def _sanitize_text(self, text: str) -> str: sanitized_text = text.lower() sanitized_text = sanitized_text.strip()