Merge branch 'v3' into main

This commit is contained in:
Maurice McCabe 2024-09-02 08:13:09 -07:00 committed by GitHub
commit 3511dbc88e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 275 additions and 36 deletions

100
README.md
View File

@ -148,13 +148,12 @@ This file contains sensitive information. Never share or commit this file to ver
- Replace with your LinkedIn account email address - Replace with your LinkedIn account email address
- `password: [Your LinkedIn password]` - `password: [Your LinkedIn password]`
- Replace with your LinkedIn account password - Replace with your LinkedIn account password
- `openai_api_key: [Your OpenAI API key]` - `llm_api_key: [Your OpenAI or Ollama API key]`
- Replace with your OpenAI API key for GPT integration - Replace with your OpenAI API key for GPT integration
- To obtain an API key, follow the tutorial at: https://medium.com/@lorenzozar/how-to-get-your-own-openai-api-key-f4d44e60c327 - To obtain an API key, follow the tutorial at: https://medium.com/@lorenzozar/how-to-get-your-own-openai-api-key-f4d44e60c327
- Note: You need to add credit to your OpenAI account to use the API. You can add credit by visiting the [OpenAI billing dashboard](https://platform.openai.com/account/billing). - Note: You need to add credit to your OpenAI account to use the API. You can add credit by visiting the [OpenAI billing dashboard](https://platform.openai.com/account/billing).
### 2. config.yaml ### 2. config.yaml
This file defines your job search parameters and bot behavior. Each section contains options that you can customize: This file defines your job search parameters and bot behavior. Each section contains options that you can customize:
@ -211,6 +210,21 @@ This file defines your job search parameters and bot behavior. Each section cont
- Sales - Sales
- Marketing - Marketing
``` ```
#### 2.1 config.yaml - Customize LLM model endpoint
- `llm_model_type`:
- Choose the model type, supported: openai / ollama / claude
- `llm_model`:
- Choose the LLM model, currently supported:
- openai: gpt-4o
- ollama: llama2, mistral:v0.3
- claude: any model
- `llm_api_url`:
- Link of the API endpoint for the LLM model
- openai: https://api.pawan.krd/cosmosrp/v1
- ollama: http://127.0.0.1:11434/
- claude: https://api.anthropic.com/v1
- Note: To run local Ollama, follow the guidelines here: [Guide to Ollama deployment](https://github.com/ollama/ollama)
### 3. plain_text_resume.yaml ### 3. plain_text_resume.yaml
@ -522,18 +536,82 @@ Using this folder as a guide can be particularly helpful for:
python main.py --resume /path/to/your/resume.pdf python main.py --resume /path/to/your/resume.pdf
``` ```
## Documentation
TODO ): ### Troubleshooting Common Issues
## Troubleshooting #### 1. OpenAI API Rate Limit Errors
**Error Message:**
openai.RateLimitError: Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error, read the docs: https://platform.openai.com/docs/guides/error-codes/api-errors.', 'type': 'insufficient_quota', 'param': None, 'code': 'insufficient_quota'}}
**Solution:**
- Check your OpenAI API billing settings at https://platform.openai.com/account/billing
- Ensure you have added a valid payment method to your OpenAI account
- Note that ChatGPT Plus subscription is different from API access
- If you've recently added funds or upgraded, wait 12-24 hours for changes to take effect
- Free tier has a 3 RPM limit; spend at least $5 on API usage to increase
#### 2. LinkedIn Easy Apply Button Not Found
**Error Message:**
Exception: No clickable 'Easy Apply' button found
**Solution:**
- Ensure that you're logged into LinkedIn properly
- Check if the job listings you're targeting actually have the "Easy Apply" option
- Verify that your search parameters in the `config.yaml` file are correct and returning jobs with the "Easy Apply" button
- Try increasing the wait time for page loading in the script to ensure all elements are loaded before searching for the button
#### 3. Incorrect Information in Job Applications
**Issue:** Bot provides inaccurate data for experience, CTC, and notice period
**Solution:**
- Update prompts for professional experience specificity
- Add fields in `config.yaml` for current CTC, expected CTC, and notice period
- Modify bot logic to use these new config fields
#### 4. YAML Configuration Errors
**Error Message:**
yaml.scanner.ScannerError: while scanning a simple key
**Solution:**
- Copy example `config.yaml` and modify gradually
- Ensure proper YAML indentation and spacing
- Use a YAML validator tool
- Avoid unnecessary special characters or quotes
#### 5. Bot Logs In But Doesn't Apply to Jobs
**Issue:** Bot searches for jobs but continues scrolling without applying
**Solution:**
- Check for security checks or CAPTCHAs
- Verify `config.yaml` job search parameters
- Ensure your LinkedIn profile meets job requirements
- Review console output for error messages
### General Troubleshooting Tips
- Use the latest version of the script
- Verify all dependencies are installed and updated
- Check internet connection stability
- Use VPNs cautiously to avoid triggering LinkedIn security
- Clear browser cache and cookies if issues persist
For further assistance, please create an issue on the [GitHub repository](https://github.com/feder-cr/LinkedIn_AIHawk_automatic_job_application/issues) with detailed information about your problem, including error messages and your configuration (with sensitive information removed).
### Additional Resources
- [Video Tutorial: How to set up LinkedIn_AIHawk](https://youtu.be/gdW9wogHEUM)
- [OpenAI API Documentation](https://platform.openai.com/docs/)
- [LinkedIn Developer Documentation](https://developer.linkedin.com/)
- [Lang Chain Developer Documentation](https://python.langchain.com/v0.2/docs/integrations/components/)
- **Carefully read logs and output :** Most of the errors are verbosely reflected just watch the output and try to find the root couse.
- **If nothing works by unknown reason:** Use tested OS. Reboot and/or update OS. Use new clean venv. Try update Python to the tested version.
- **ChromeDriver Issues:** Ensure ChromeDriver is compatible with your installed Chrome version.
- **Missing Files:** Verify that all necessary files are present in the data folder.
- **Invalid YAML:** Check your YAML files for syntax errors . Try to use external YAML validators e.g. https://www.yamllint.com/
- **OpenAI endpoint isues**: Try to check possible limits\blocking at their side
If you encounter any issues, you can open an issue on [GitHub](https://github.com/feder-cr/linkedIn_auto_jobs_applier_with_AI/issues). If you encounter any issues, you can open an issue on [GitHub](https://github.com/feder-cr/linkedIn_auto_jobs_applier_with_AI/issues).
Please add valuable details to the subject and to the description. If you need new feature then please reflect this. Please add valuable details to the subject and to the description. If you need new feature then please reflect this.

View File

@ -40,3 +40,7 @@ companyBlacklist:
titleBlacklist: titleBlacklist:
- word1 - word1
- word2 - word2
llm_model_type: openai
llm_model: gpt-4o
llm_api_url: https://api.pawan.krd/cosmosrp/v1

View File

@ -1,3 +1,3 @@
email: myemaillinkedin@gmail.com email: myemaillinkedin@gmail.com
password: ImpossiblePassowrd10 password: ImpossiblePassowrd10
openai_api_key: sk-11KRr4uuTwpRGfeRTfj1T9BlbkFJjP8QTrswHU1yGruru2FR llm_api_key: 'sk-11KRr4uuTwpRGfeRTfj1T9BlbkFJjP8QTrswHU1yGruru2FR'

View File

@ -37,3 +37,7 @@ companyBlacklist:
- Crossover - Crossover
titleBlacklist: titleBlacklist:
llm_model_type: openai
llm_model: 'gpt-4o'
llm_api_url: https://api.pawan.krd/cosmosrp/v1'

View File

@ -1,3 +1,3 @@
email: myemaillinkedin@gmail.com email: myemaillinkedin@gmail.com
password: ImpossiblePassowrd10 password: ImpossiblePassowrd10
openai_api_key: sk-11KRr4uuTwpRGfeRTfj1T9BlbkFJjP8QTrswHU1yGruru2FR llm_api_key: 'sk-11KRr4uuTwpRGfeRTfj1T9BlbkFJjP8QTrswHU1yGruru2FR'

17
main.py
View File

@ -101,7 +101,7 @@ class ConfigValidator:
@staticmethod @staticmethod
def validate_secrets(secrets_yaml_path: Path) -> tuple: def validate_secrets(secrets_yaml_path: Path) -> tuple:
secrets = ConfigValidator.validate_yaml_file(secrets_yaml_path) secrets = ConfigValidator.validate_yaml_file(secrets_yaml_path)
mandatory_secrets = ['email', 'password', 'openai_api_key'] mandatory_secrets = ['email', 'password']
for secret in mandatory_secrets: for secret in mandatory_secrets:
if secret not in secrets: if secret not in secrets:
@ -111,10 +111,7 @@ class ConfigValidator:
raise ConfigError(f"Invalid email format in secrets file {secrets_yaml_path}.") raise ConfigError(f"Invalid email format in secrets file {secrets_yaml_path}.")
if not secrets['password']: if not secrets['password']:
raise ConfigError(f"Password cannot be empty in secrets file {secrets_yaml_path}.") raise ConfigError(f"Password cannot be empty in secrets file {secrets_yaml_path}.")
if not secrets['openai_api_key']: return secrets['email'], str(secrets['password']), secrets['llm_api_key']
raise ConfigError(f"OpenAI API key cannot be empty in secrets file {secrets_yaml_path}.")
return secrets['email'], str(secrets['password']), secrets['openai_api_key']
class FileManager: class FileManager:
@staticmethod @staticmethod
@ -158,14 +155,14 @@ def init_browser() -> webdriver.Chrome:
except Exception as e: except Exception as e:
raise RuntimeError(f"Failed to initialize browser: {str(e)}") raise RuntimeError(f"Failed to initialize browser: {str(e)}")
def create_and_run_bot(email: str, password: str, parameters: dict, openai_api_key: str): def create_and_run_bot(email, password, parameters, llm_api_key):
try: try:
style_manager = StyleManager() style_manager = StyleManager()
resume_generator = ResumeGenerator() resume_generator = ResumeGenerator()
with open(parameters['uploads']['plainTextResume'], "r") as file: with open(parameters['uploads']['plainTextResume'], "r") as file:
plain_text_resume = file.read() plain_text_resume = file.read()
resume_object = Resume(plain_text_resume) resume_object = Resume(plain_text_resume)
resume_generator_manager = FacadeManager(openai_api_key, style_manager, resume_generator, resume_object, Path("data_folder/output")) resume_generator_manager = FacadeManager(llm_api_key, style_manager, resume_generator, resume_object, Path("data_folder/output"))
os.system('cls' if os.name == 'nt' else 'clear') os.system('cls' if os.name == 'nt' else 'clear')
resume_generator_manager.choose_style() resume_generator_manager.choose_style()
os.system('cls' if os.name == 'nt' else 'clear') os.system('cls' if os.name == 'nt' else 'clear')
@ -175,7 +172,7 @@ def create_and_run_bot(email: str, password: str, parameters: dict, openai_api_k
browser = init_browser() browser = init_browser()
login_component = LinkedInAuthenticator(browser) login_component = LinkedInAuthenticator(browser)
apply_component = LinkedInJobManager(browser) apply_component = LinkedInJobManager(browser)
gpt_answerer_component = GPTAnswerer(openai_api_key) gpt_answerer_component = GPTAnswerer(parameters, llm_api_key)
bot = LinkedInBotFacade(login_component, apply_component) bot = LinkedInBotFacade(login_component, apply_component)
bot.set_secrets(email, password) bot.set_secrets(email, password)
bot.set_job_application_profile_and_resume(job_application_profile_object, resume_object) bot.set_job_application_profile_and_resume(job_application_profile_object, resume_object)
@ -197,12 +194,12 @@ def main(resume: Path = None):
secrets_file, config_file, plain_text_resume_file, output_folder = FileManager.validate_data_folder(data_folder) secrets_file, config_file, plain_text_resume_file, output_folder = FileManager.validate_data_folder(data_folder)
parameters = ConfigValidator.validate_config(config_file) parameters = ConfigValidator.validate_config(config_file)
email, password, openai_api_key = ConfigValidator.validate_secrets(secrets_file) email, password, llm_api_key = ConfigValidator.validate_secrets(secrets_file)
parameters['uploads'] = FileManager.file_paths_to_dict(resume, plain_text_resume_file) parameters['uploads'] = FileManager.file_paths_to_dict(resume, plain_text_resume_file)
parameters['outputFileDirectory'] = output_folder parameters['outputFileDirectory'] = output_folder
create_and_run_bot(email, password, parameters, openai_api_key) create_and_run_bot(email, password, parameters, llm_api_key)
except ConfigError as ce: except ConfigError as ce:
print(f"Configuration error: {str(ce)}") print(f"Configuration error: {str(ce)}")
print("Refer to the configuration guide for troubleshooting: https://github.com/feder-cr/LinkedIn_AIHawk_automatic_job_application/blob/main/readme.md#configuration") print("Refer to the configuration guide for troubleshooting: https://github.com/feder-cr/LinkedIn_AIHawk_automatic_job_application/blob/main/readme.md#configuration")

View File

@ -3,7 +3,8 @@ import os
import re import re
import textwrap import textwrap
from datetime import datetime from datetime import datetime
from typing import Dict, List from abc import ABC, abstractmethod
from typing import Dict, List, Union
from pathlib import Path from pathlib import Path
from dotenv import load_dotenv from dotenv import load_dotenv
from langchain_core.messages.ai import AIMessage from langchain_core.messages.ai import AIMessage
@ -17,10 +18,66 @@ import src.strings as strings
load_dotenv() load_dotenv()
class AIModel(ABC):
@abstractmethod
def invoke(self, prompt: str) -> str:
pass
class OpenAIModel(AIModel):
def __init__(self, api_key: str, llm_model: str, llm_api_url: str):
from langchain_openai import ChatOpenAI
self.model = ChatOpenAI(model_name=llm_model, openai_api_key=api_key,
temperature=0.4, base_url=llm_api_url)
def invoke(self, prompt: str) -> str:
print("invoke in openai")
response = self.model.invoke(prompt)
return response
class ClaudeModel(AIModel):
def __init__(self, api_key: str, llm_model: str, llm_api_url: str):
from langchain_anthropic import ChatAnthropic
self.model = ChatAnthropic(model=llm_model, api_key=api_key,
temperature=0.4, base_url=llm_api_url)
def invoke(self, prompt: str) -> str:
response = self.model.invoke(prompt)
return response
class OllamaModel(AIModel):
def __init__(self, api_key: str, llm_model: str, llm_api_url: str):
from langchain_ollama import ChatOllama
self.model = ChatOllama(model=llm_model, base_url=llm_api_url)
def invoke(self, prompt: str) -> str:
response = self.model.invoke(prompt)
return response
class AIAdapter:
def __init__(self, config: dict, api_key: str):
self.model = self._create_model(config, api_key)
def _create_model(self, config: dict, api_key: str) -> AIModel:
llm_model_type = config['llm_model_type']
llm_model = config['llm_model']
llm_api_url = config['llm_api_url']
print('Using {0} with {1} from {2}'.format(llm_model_type, llm_model, llm_api_url))
if llm_model_type == "openai":
return OpenAIModel(api_key, llm_model, llm_api_url)
elif llm_model_type == "claude":
return ClaudeModel(api_key, llm_model, llm_api_url)
elif llm_model_type == "ollama":
return OllamaModel(api_key, llm_model, llm_api_url)
else:
raise ValueError(f"Unsupported model type: {model_type}")
def invoke(self, prompt: str) -> str:
return self.model.invoke(prompt)
class LLMLogger: class LLMLogger:
def __init__(self, llm: ChatOpenAI): def __init__(self, llm: Union[OpenAIModel, OllamaModel, ClaudeModel]):
self.llm = llm self.llm = llm
@staticmethod @staticmethod
@ -78,12 +135,12 @@ class LLMLogger:
class LoggerChatModel: class LoggerChatModel:
def __init__(self, llm: ChatOpenAI): def __init__(self, llm: Union[OpenAIModel, OllamaModel, ClaudeModel]):
self.llm = llm self.llm = llm
def __call__(self, messages: List[Dict[str, str]]) -> str: def __call__(self, messages: List[Dict[str, str]]) -> str:
# Call the LLM with the provided messages and log the response. # Call the LLM with the provided messages and log the response.
reply = self.llm(messages) reply = self.llm.invoke(messages)
parsed_reply = self.parse_llmresult(reply) parsed_reply = self.parse_llmresult(reply)
LLMLogger.log_request(prompts=messages, parsed_reply=parsed_reply) LLMLogger.log_request(prompts=messages, parsed_reply=parsed_reply)
return reply return reply
@ -113,10 +170,9 @@ class LoggerChatModel:
class GPTAnswerer: class GPTAnswerer:
def __init__(self, openai_api_key): def __init__(self, config, llm_api_key):
self.llm_cheap = LoggerChatModel( self.ai_adapter = AIAdapter(config, llm_api_key)
ChatOpenAI(model_name="gpt-4o-mini", openai_api_key=openai_api_key, temperature=0.4) self.llm_cheap = LoggerChatModel(self.ai_adapter)
)
@property @property
def job_description(self): def job_description(self):
return self.job.description return self.job.description

View File

@ -1,7 +1,13 @@
from typing import Dict, List from typing import Dict, List
from linkedin_api import Linkedin from linkedin_api import Linkedin
from typing import Optional, Union, Literal from typing import Optional, Union, Literal
from urllib.parse import urlencode from urllib.parse import quote, urlencode
import logging
import json
# set log to all debug
logging.basicConfig(level=logging.INFO)
class LinkedInEvolvedAPI(Linkedin): class LinkedInEvolvedAPI(Linkedin):
def __init__(self, username, password): def __init__(self, username, password):
@ -106,7 +112,7 @@ class LinkedInEvolvedAPI(Linkedin):
if remote: if remote:
query["selectedFilters"]["workplaceType"] = f"List({','.join(remote)})" query["selectedFilters"]["workplaceType"] = f"List({','.join(remote)})"
if easy_apply: if easy_apply:
query["selectedFilters"]["easyApply"] = "List(true)" query["selectedFilters"]["applyWithLinkedin"] = "List(true)"
query["selectedFilters"]["timePostedRange"] = f"List(r{listed_at})" query["selectedFilters"]["timePostedRange"] = f"List(r{listed_at})"
query["spellCorrectionEnabled"] = "true" query["spellCorrectionEnabled"] = "true"
@ -161,7 +167,101 @@ class LinkedInEvolvedAPI(Linkedin):
return results return results
def get_fields_for_easy_apply(self,job_id:str) -> List[Dict]:
"""Get fields needed for easy apply jobs.
:param job_id: Job ID
:type job_id: str
:return: Fields
:rtype: dict
"""
cookies = self.client.session.cookies.get_dict()
cookie_str = "; ".join([f"{k}={v}" for k, v in cookies.items()])
headers: Dict[str, str] = self._headers()
headers["Accept"] = "application/vnd.linkedin.normalized+json+2.1"
headers["csrf-token"] = cookies["JSESSIONID"].replace('"', "")
headers["Cookie"] = cookie_str
headers["Connection"] = "keep-alive"
default_params = {
"decorationId": "com.linkedin.voyager.dash.deco.jobs.OnsiteApplyApplication-67",
"jobPostingUrn": f"urn:li:fsd_jobPosting:{job_id}",
"q": "jobPosting",
}
default_params = urlencode(default_params)
res = self._fetch(
f"/voyagerJobsDashOnsiteApplyApplication?{default_params}",
headers=headers,
cookies=cookies,
)
match res.status_code:
case 200:
pass
case 409:
self.logger.error("Failed to fetch fields for easy apply job because already applied to this job!")
return []
case _:
self.logger.error("Failed to fetch fields for easy apply job")
return []
try:
data = res.json()
except ValueError:
self.logger.error("Failed to parse JSON response")
return []
form_components = []
for item in data.get("included", []):
if 'formComponent' in item:
urn = item['urn']
try:
title = item['title']['text']
except TypeError:
title = urn
form_component_type = list(item['formComponent'].keys())[0]
form_component_details = item['formComponent'][form_component_type]
component_info = {
'title': title,
'urn': urn,
'formComponentType': form_component_type,
}
if 'textSelectableOptions' in form_component_details:
options = [
opt['optionText']['text'] for opt in form_component_details['textSelectableOptions']
]
component_info['selectableOptions'] = options
elif 'selectableOptions' in form_component_details:
options = [
opt['textSelectableOption']['optionText']['text']
for opt in form_component_details['selectableOptions']
]
component_info['selectableOptions'] = options
form_components.append(component_info)
return form_components
## EXAMPLE USAGE
if __name__ == "__main__":
api: LinkedInEvolvedAPI = LinkedInEvolvedAPI(username="", password="")
jobs = api.search_jobs(keywords="Frontend Developer", location_name="Italia", limit=5, easy_apply=True, offset=1)
for job in jobs:
job_id: str = job["job_id"]
fields = api.get_fields_for_easy_apply(job_id)
for field in fields:
print(field)