

ember-cli 101
Learn Ember.js with ember-cli.

Adolfo Builes

This book is for sale at http://leanpub.com/ember-cli-101

This version was published on 2015-01-21

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 - 2015 Adolfo Builes

http://leanpub.com/ember-cli-101
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Adolfo Builes by spreading the word about this book on Twitter!

The suggested hashtag for this book is #ember-cli-101.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#ember-cli-101

http://twitter.com
https://twitter.com/search?q=%23ember-cli-101
https://twitter.com/search?q=%23ember-cli-101

Contents

Why . 1

Anatomy . 2

Conventions . 3
In your code . 3
In your project . 3

Getting started . 4
Requirements . 4
ember new . 4

Hands-on . 7
Adding a friend resource . 7
Connecting with a Backend . 9
A word on Adapters . 10
Listing our friends . 17
Adding a new friend . 22
Viewing a friend profile . 32
Updating a friend profile . 35
Deleting friends . 42
Mockups . 45
Installing Dependencies . 47
Articles Resource . 53
Defining relationships. 54
Nested Articles Index . 56
Lending new articles . 61
Computed Property Macros . 66
Using Item controller to mark an article as returned. 67
Implementing auto save. 70
Route hooks . 73

Working with JavaScript plugins . 77
Installing moment . 77
It’s a global! . 78

CONTENTS

Wrapping globals . 79
Writing an Ember helper: formatted-date. 80
Working with libraries with named AMD distributions. 81
ember-browserify . 86
Wrapping up . 88

Components and Addons . 89
Web Components . 89
ember-cli addons . 90
ember-cli-fill-murray . 90
Consuming fill-murray in borrowers . 94

Ember Data . 96
DS.Store Public API . 96
Loading relationships . 100
Working with async relationships in Ember-Data . 102
What to use? . 106

Computed Properties and Observers . 107
An alternative syntax for computed properties . 107
Computed Property function signature . 108
Computed Properties gotchas . 110
Observers . 110
Observing collections . 112

Driving our application state through the URL . 113
Sorting friends. 115
Query Parameters . 118
Refreshing the model when query parameters changes . 119
Further Reading . 119

Testing Ember.js applications . 121
Unit Testing . 121
Acceptance Tests . 123
Further Reading . 128

PODS . 129
Using pods . 129

Deploying Ember.js applications . 132
Deploying to S3 . 132
Deploying to Divshot . 138
Deploying to Heroku with the heroku-buildpack-ember-cli 139
ember-cli-deploy . 140

CONTENTS

Updating your project to the latest version of ember-cli 141

Why
Before getting into the specifics, I’d like to explain why ember-cli was created and how it is different
from other tools.

The main objective of ember-cli is to reduce what we call glue code and allow developers to focus
on what is most important for them: building their app.

Glue code refers to those things that are not related to your application but that every project
requires. For example, you need to test your code, compile your assets, serve your files in the browser,
interact with a back-end API, perhaps use third party libraries, and so on. All those things can be
automated and, as it is done in other frameworks, some conventions can provide a common ground
to begin building your applications.

Having a tool that does that for you not only eases the process of writing your app but also saves
you time and money (you don’t have to think about problems that are already solved).

ember-cli aims to be exactly that tool. Thanks to Broccoli¹, waiting time is reduced while your
assets compile. QUnit² allows you to write tests, which can then be run with Testem³. If you need
to deploy your build to production, you’ll get fingerprint, compression, and some other features for
free.

ember-cli also encourages the use of ES6(ECMAScript 6)⁴. It provides built-in support for modules
and integrates easily with other plugins, allowing you to write your applications using other ES6
features.

Next time you consider wasting your day wiring up all those things I just mentioned, consider
ember-cli. It will make your life easier and you will get support from a lot of smart people who are
already using this tool.

¹https://github.com/broccolijs/broccoli
²http://qunitjs.com/
³https://github.com/airportyh/testem
⁴https://people.mozilla.org/∼jorendorff/es6-draft.html

https://github.com/broccolijs/broccoli
http://qunitjs.com/
https://github.com/airportyh/testem
https://people.mozilla.org/~jorendorff/es6-draft.html

Anatomy
In this chapter we will learn about the main components of ember-cli.

ember-cli is a Node.js command line application that sits on top of other libraries.

Its main component is Broccoli, a builder designed to keep builds as fast as possible.

When we run ember server, Broccoli compiles our project and puts it in a directory where it can be
served using Express.js⁵, a Node.js library. Express not only serves files but also extends ember-
cli’s functionality using its middlewares. An example of this is http-proxy, which supports the
--proxy option that allows us to develop against our development backend.

Testing is powered byQUnit and Testem. By navigating to http:/localhost:4200/tests, our tests run
automatically. We can also run Testem inCI or --developmentmode with the ember test command.
Currently, only QUnit is supported and it’s done via an ember-cli add-on. We will probably see
support for other testing frameworks and runners as more people become familiar with the add-on
system.

ember-cli uses its own resolver and has a different naming convention from Ember.js’s defaults.

ember-cli makes us write our application using ES6 Modules. The code is then transpiled (com-
piled)⁶ to AMD⁷ and finally loaded with the minimalist AMD⁸ loader, loader.js.

You can use CoffeeScript if you want, but you are encouraged to use plain JS and ES6 modules
where possible. In subsequent chapters, we’ll explore its syntax and features.

Finally, we need to cover plugins that enhance the functionality of Broccoli. Each transformation
your files go through is done with a Broccoli plugin, e.g. transpiling, minifying, finger-printing,
uglifying. You can have your own Broccoli plugins and plug them wherever you like throughout
the build process.

⁵http://expressjs.com/
⁶The transpiling process is done with es6-module-transpiler.
⁷To know more about AMD checkout their wiki
⁸To know more about AMD checkout their wiki

http://expressjs.com/
https://github.com/esnext/es6-module-transpiler
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/amdjs/amdjs-api/wiki/AMD

Conventions
We will explore some of the basic conventions and best practices both in Ember.js and ember-cli.

In your code

• Use camelCase even if you are writing CoffeeScript.
• Avoid globals as much as possible: ember-cli supports ES6 Modules out of the box so you can
write your app in a modular way.

• Create custom shims for apps that are not distributed in AMD format: we will cover this in a
subsequent chapter, but the basic idea is to treat libraries that are not writtenwith ES6 Modules

as if they were.
• Create reusable code: if there is a functionality you are using in several different places,
remember that Ember.js offers an Ember.Mixin class⁹ that you can the reuse in different
parts. If you think other people can benefit from this, create an add-on.

In your project

• Name your files using kebab-case: Use hyphens instead of underscores to separate words in
a file name. For example, if you have a model called InvoiceItem, ember-cli expects this
model to be under app/models/invoice-item.js.

• Optionally, include the file type at the beginning: Some people like to include the file type in
the name of the file (e.g. app/routes/route-index.js). I personally prefer not to do this, but
if you want to, just remember to include it at the beginning. Otherwise, your app will not be
able to find (in this case) the IndexRoute.

• Put child files in subdirectories:
– app/routes/invoice-item/index.js
– app/controllers/invoice-items/index.js

⁹http://emberjs.com/api/classes/Ember.Mixin.html

http://emberjs.com/api/classes/Ember.Mixin.html
http://emberjs.com/api/classes/Ember.Mixin.html

Getting started
With this book, we’ll create an app to keep track of items we lend to our friends. It’s a very simple
app, but it will allow us to learn Ember. At the same time, we’ll learn how to use ember-cli generators,
work with third party libraries, and write ember-cli add-ons.

Requirements

1. Install Node.js. The easiest way is to download the installer from http://nodejs.org/¹⁰.
2. Install the ember-inspector. Click here for Chrome¹¹ or here for Firefox¹².
3. Install watchman¹³ for fast watching. We can start it with watchman watch ∼/path-to-dir.
4. Make sure you are not required to run npm (Node’s package manager) with sudo. To test this,

run the following command

npm -g install ember-cli

If youwere prompted to install as sudo,make sure you can run npmwithout it. TylerWendlandtwrote
an excellent tutorial for installing npm without sudo: http://www.wenincode.com/installing-node-
jsnpm-without-sudo¹⁴. It’s very important that you are not required to run npm as sudo, otherwise
you will have problems when running ember-cli.

All set? Now let’s create our first ember-cli app.

ember new

Like other command line tools, ember-cli comes with a bunch of useful commands. The first one
we will explore is new, which creates a new project.

¹⁰http://nodejs.org/
¹¹https://chrome.google.com/webstore/detail/ember-inspector/bmdblncegkenkacieihfhpjfppoconhi?hl=en
¹²https://addons.mozilla.org/en-US/firefox/addon/ember-inspector/
¹³https://github.com/facebook/watchman
¹⁴http://www.wenincode.com/installing-node-jsnpm-without-sudo

http://nodejs.org/
https://chrome.google.com/webstore/detail/ember-inspector/bmdblncegkenkacieihfhpjfppoconhi?hl=en
https://addons.mozilla.org/en-US/firefox/addon/ember-inspector/
https://github.com/facebook/watchman
http://www.wenincode.com/installing-node-jsnpm-without-sudo
http://www.wenincode.com/installing-node-jsnpm-without-sudo
http://nodejs.org/
https://chrome.google.com/webstore/detail/ember-inspector/bmdblncegkenkacieihfhpjfppoconhi?hl=en
https://addons.mozilla.org/en-US/firefox/addon/ember-inspector/
https://github.com/facebook/watchman
http://www.wenincode.com/installing-node-jsnpm-without-sudo

Getting started 5

Creating a new project

ember new borrowers

The new command will create a directory with the following structure:

Project Structure

|-- Brocfile.js

|-- README.md

|-- app

|-- bower.json

|-- bower_components

|-- config

|-- node_modules

|-- package.json

|-- public

|-- testem.json

|-- tests

+-- vendor

We can add --help to any ember command to see available options (e.g., ember new

--help).

By default, ember-cli assumes we are using git. If we are not, we can opt out by passing
–skip-git: ember new borrowers --skip-git.

We will cover all the components as we move through this text, but the following are the most
important.

• app is where the app code is located: controllers, routes, views, templates, and styles.
• tests is where test code is located.
• bower.json helps us manage JavaScript plugins via Bower.
• package.json helps us with JavaScript dependencies via npm.

Getting started 6

..

A question that pops up often is, “What’s the difference between npm and bower?” From this Stack
Overflow: *Npm and Bower are both dependency management tools. The main difference between
them is that npm is used to install Node js modules while bower js is used to manage front end
components like html, css, js, etc.

http://stackoverflow.com/questions/21198977/difference-between-grunt-npm-and-bower-package-json-vs-bower-
json/21199026#21199026

If everything is fine, we can do ember server and navigate to http://localhost:4200 where we
should see a Welcome to Ember.js message.

http://stackoverflow.com/questions/21198977/difference-between-grunt-npm-and-bower-package-json-vs-bower-json/21199026#21199026
http://stackoverflow.com/questions/21198977/difference-between-grunt-npm-and-bower-package-json-vs-bower-json/21199026#21199026
http://stackoverflow.com/questions/21198977/difference-between-grunt-npm-and-bower-package-json-vs-bower-json/21199026#21199026

Hands-on
In the following sections we will add some models to our app, define the interactions between them,
and create an interface to add friends and the articles they borrow from us.

Adding a friend resource

The main model of our application will be called Friend. It represents the people who will borrow
articles from us.

Let’s add it with the resource generator.

$ ember generate resource friends firstName:string lastName:string \

email:string twitter:string totalArticles:number

create app/models/friend.js

create app/routes/friends.js

create app/templates/friends.hbs

create tests/unit/models/friend-test.js

create tests/unit/routes/friends-test.js

If we open app/models/friend.js or app/routes/friends.js, we will see that they have a similar
structure.

Object Structure

import Foo from 'foo';

export default Foo.extend({

});

What is that? ES6 Modules! As mentioned previously, ember-cli expects us to write our code using
ES6 Modules. import Foo from 'foo' consumes the default export from the package foo and
assigns it to the variable Foo. We use export default Foo.extend... to define what our module
will expose. In this case we will export a single value, which will be a subclass of Foo.

For a better understanding of ES6 modules, visit http://jsmodules.io/¹⁵.

¹⁵http://jsmodules.io

http://jsmodules.io
http://jsmodules.io

Hands-on 8

Now let’s look at the model and route.

app/models/friend.js

// We import the default value from ember-data into the variable DS.

//

// Ember-Data exports by default a namespace (known as DS) that exposes all the

// classes and functions defined in http://emberjs.com/api/data.

import DS from 'ember-data';

// Define the default export for this model, which will be a subclass

// of DS.Model.

//

// After this class has been defined, we can import this subclass doing:

// import Friend from 'borrowers/models/friend'

//

// We can also use relative imports. So if we were in another model, we

// could have written

// import Friend from './friend';

export default DS.Model.extend({

// DS.attr is the standard way to define attributes with Ember-Data

firstName: DS.attr('string'),

// Defines an attribute called lastName of type **string**

lastName: DS.attr('string'),

// Ember-Data expects the attribute **email** on the friend's payload

email: DS.attr('string'),

twitter: DS.attr('string'),

totalArticles: DS.attr('number')

});

Hands-on 9

app/routes/friends.js

// Assigns the default export from **ember** into the variable Ember.

//

// The default export for the ember package is a namespace that

// contains all the classes and functions for Ember that are specified in

// http://emberjs.com/api/

import Ember from 'ember';

// Defines the default export for this module. For now we will not

// add anything extra, but if we want to use a Route **hook** or

// **actions** this would be the place.

export default Ember.Route.extend({

});

In a future version of Ember we might be able to be more explicit about the things we want to use
from every module. Instead of writing import Ember from ‘ember’, we could have import { Route
} from ‘ember’ or import { Model } from ‘ember-data’. This is currently possible in ES6 using
Named Imports and Exports¹⁶.

What about tests? If we open the test files, we’ll see that they are also written in ES6. We’ll talk
about that in a later chapter. Now let’s connect to a backend and display some data.

Connecting with a Backend

We need to consume and store our data from somewhere. In this case, we created a public API under
http://api.ember-cli-101.com with Ruby on Rails. The following are the API end-points.

Verb URI Pattern

GET /api/articles
POST /api/articles
GET /api/articles/:id
PATCH /api/articles/:id
PUT /api/articles/:id
DELETE /api/articles/:id
GET /api/friends
POST /api/friends
GET /api/friends/:id
PATCH /api/friends/:id

¹⁶http://jsmodules.io

http://jsmodules.io
http://jsmodules.io

Hands-on 10

Verb URI Pattern

PUT /api/friends/:id
DELETE /api/friends/:id

If we do a GET request to /api/friends, we will get a list of all our friends.

The following output might be different for every run since the data

in the API is changing constantly.

#

$ curl http://api.ember-cli-101.com/api/friends.json | python -m json.tool

{

"friends": [

{

"email": "test@gmail.com",

"first_name": "jon",

"id": 1,

"last_name": "snow",

"twitter": "foo"

}

]

}

Piping JSON data to python -m json.tool is an easy way to pretty print JSON data in our
console using python’s JSON library. It’s very useful if we want to quickly debug JSON
data.

When returning a list, Ember-Data expects the root name of the JSON payload to match the name
of the model but pluralized (friends) and followed by an array of objects. This payload will help us
to populate Ember-Data store.

If we want to run the server by ourselves or create our own instance on Heroku, we can use the
Heroku Button added to the repository borrowers-backend¹⁷.

Once we have created our own instance on Heroku, we need to install Heroku Toolbelt¹⁸ and check
our application’s log with heroku logs -t --app my-app-name.

A word on Adapters

By default, Ember-Data uses the DS.RESTAdapter¹⁹, which expects everything to be in camelCase
following JavaScript’s coding conventions. In our example, however, we will work with an API

¹⁷https://github.com/abuiles/borrowers-backend
¹⁸https://toolbelt.heroku.com/
¹⁹We recommend going through the documentation to get more insights on this adapter DS.RESTAdapter.

https://github.com/abuiles/borrowers-backend
https://toolbelt.heroku.com/
https://github.com/abuiles/borrowers-backend
https://toolbelt.heroku.com/
http://emberjs.com/api/data/classes/DS.RESTAdapter.html

Hands-on 11

written in Ruby on Rails that uses a different convention for keys and naming. Everything is in
snake_case.

Wementioned previously that everything has to be in camelCase since it is what the default Ember-
Data adapter expects, but we can extend the DS.RESTAdapter to write our own adapter, matching
our backend’s payload.

This is such a common scenario that Ember-Data includes by default a DS.ActiveModelAdapter²⁰
that is modeled after rails-api’s project active_model_serializers²¹. This is widely used in the Ruby
on Rails world and basically helps build the JSON that the API will return.

The following is the implementation of DS.ActiveModelAdapter²². It’s just a few lines of
code and it helps us understand what’s going on under the hood.

There are a bunch of different adapters for different projects and frameworks. Some of them are:

• ember-data-django-rest-adapter²³
• ember-data-tastypie-adapter²⁴
• emberfire: FireBase adapter²⁵

We can find a longer list of adapters if we search GitHub for ember-data adapters²⁶.

Specifying our own adapter

Asmentioned in the previous chapter, if we are usingEmber-Data it will resolve to theDS.RESTAdapter
unless we specify something else.

To see it in action, let’s play with the console and examine how Ember tries to resolve things.

First we need to go to config/environment.js and uncomment ENV.APP.LOG_RESOLVER²⁷. It should
look like:

²⁰Documentation for DS.ActiveModelAdapter.html.
²¹https://github.com/rails-api/active_model_serializers
²²https://github.com/emberjs/data/blob/v1.0.0-beta.10/packages/activemodel-adapter/lib/system/active_model_adapter.js#L104
²³https://github.com/toranb/ember-data-django-rest-adapter
²⁴https://github.com/escalant3/ember-data-tastypie-adapter
²⁵https://github.com/firebase/emberfire
²⁶https://github.com/search?q=ember-data+adapter&ref=opensearch
²⁷Enable ENV.APP.LOG_RESOLVER.

https://github.com/rails-api/active_model_serializers
https://github.com/emberjs/data/blob/v1.0.0-beta.10/packages/activemodel-adapter/lib/system/active_model_adapter.js#L104
https://github.com/toranb/ember-data-django-rest-adapter
https://github.com/escalant3/ember-data-tastypie-adapter
https://github.com/firebase/emberfire
https://github.com/search?q=ember-data+adapter&ref=opensearch
http://emberjs.com/api/data/classes/DS.ActiveModelAdapter.html
https://github.com/rails-api/active_model_serializers
https://github.com/emberjs/data/blob/v1.0.0-beta.10/packages/activemodel-adapter/lib/system/active_model_adapter.js#L104
https://github.com/toranb/ember-data-django-rest-adapter
https://github.com/escalant3/ember-data-tastypie-adapter
https://github.com/firebase/emberfire
https://github.com/search?q=ember-data+adapter&ref=opensearch
https://github.com/abuiles/borrowers/commit/a66df6683eccedfcf185db23801bfc865e3dab3

Hands-on 12

config/environment.js

if (environment === 'development') {

ENV.APP.LOG_RESOLVER = true;

ENV.APP.LOG_ACTIVE_GENERATION = true;

// ENV.APP.LOG_TRANSITIONS = true;

// ENV.APP.LOG_TRANSITIONS_INTERNAL = true;

ENV.APP.LOG_VIEW_LOOKUPS = true;

}

That line will log whatever Ember tries to “find” to the browser’s console. If we stop ember server,
start it again, go to http://localhost:4200²⁸, click refresh, and open the console, we’ll see:

[] router:main borrowers/main/router

[] router:main borrowers/router

[✓] router:main borrowers/router

[] application:main borrowers/main/application

[] application:main undefined

[] application:main borrowers/application

[] application:main borrowers/applications/main

[] application:main undefined

That’s the Ember resolver trying to find things. We don’t need to worry about understanding all of
it right now.

Coming back to the Adapter, if we open the ember-inspector and grab the instance of the
Application route

ember-inspector

²⁸http://localhost:4200

http://localhost:4200
http://localhost:4200

Hands-on 13

We can grab almost any instance of a Route, Controller, View or Model with the ember-
inspector and then reference it in the console with the $E variable. This variable is reset
every time the browser gets refreshed.

With the ApplicationRoute instance at hand, let’s have some fun.

Let’s examine what happens if we try to find all our friends:

$E.store.find('friend')

[] adapter:friendborrowers/friend/adapter

[] adapter:friendundefined

[] adapter:friendborrowers/adapters/friend

[] adapter:friendundefined

[] adapter:applicationborrowers/application/adapter

[] adapter:applicationundefined

[] adapter:applicationborrowers/adapters/application

[] adapter:applicationundefined

First, the Resolver tries to find an adapter at the model level:

[] adapter:friendborrowers/friend/adapter

[] adapter:friendundefined

[] adapter:friendborrowers/adapters/friend

[] adapter:friendundefined

We can use this if we want to change the default behavior of Ember-Data. For example, changing
the way an URL is generated for a resource.

Suppose a friend hasMany('article') and we are using nested URLs in the backend. In this case,
the URL for an article will be /friends/1/articles/1 instead of articles/1

We can fix this overriding buildURL²⁹:

²⁹http://emberjs.com/api/data/classes/DS.RESTAdapter.html#method_buildURL

http://emberjs.com/api/data/classes/DS.RESTAdapter.html#method_buildURL
http://emberjs.com/api/data/classes/DS.RESTAdapter.html#method_buildURL

Hands-on 14

Custom adapter for a model called article: app/adapters/article.js

export default ApplicationAdapter.extend({

buildURL: function(type, id, record) {

return '/friends/' + record.get('friend.id') + '/articles/' + id;

}

})

Second, if no adapter is specified for the model, then the Resolver checks if we specified an
Application adapter. As we can see, it returns undefined, which means we didn’t specify one:

[] adapter:applicationborrowers/application/adapter

[] adapter:applicationundefined

[] adapter:applicationborrowers/adapters/application

[] adapter:applicationundefined

Third, if no model or application adapter is found, then Ember-Data falls back to the default adapter,
the RESTAdapter. We can check the implementation for this directly in the adapterFor³⁰ function
in Ember-Data.

We can see that there is a look up for the friend and application adapter in
two places borrowers/friend/adapter, borrowers/adapters/friend, borrowers/applica-
tion/adapter and borrowers/adapters/application. ember-cli allows us to group things
that are logically related under a single directory. This structure is known as PODS. We’ll
work with the normal structure first, and at the end of the book we’ll rewrite a part of our
code to be structured under PODS.

Since we want to work with a different adapter, we need to tell Ember to do so. In this case we
want the DS.ActiveModelAdapter as our application adapter. Again, ember-cli has a generator for
adapters.

ember g is a short version of ember generator. We’ll use both interchangeably to get used
to the syntax.

Run ember g adapter application to create an application adapter:

³⁰https://github.com/emberjs/data/blob/131119/packages/ember-data/lib/system/store.js#L1552

https://github.com/emberjs/data/blob/131119/packages/ember-data/lib/system/store.js#L1552
https://github.com/emberjs/data/blob/131119/packages/ember-data/lib/system/store.js#L1552

Hands-on 15

$ ember g adapter application

version: 0.1.5

installing

create app/adapters/application.js

installing

create tests/unit/adapters/application-test.js

It will create a file like the following:

app/adapters/application.js

import DS from 'ember-data';

export default DS.RESTAdapter.extend({

});

But we don’t want to use the DS.RESTAdapter so let’s change that file to look like the following:

app/adapters/application.js

import DS from 'ember-data';

export default DS.ActiveModelAdapter.extend({

namespace: 'api'

});

We now specify our Adapter and also pass a property namespace. The namespace option tells
Ember-Data to namespace all our API requests under api. So if we ask for the collection friend,
Ember-Data will make a request to /api/friends. If we don’t have that, then it will be just
/friends.

Let’s go back to our browser’s console, grab the ApplicationRoute instance again from the ember-
inspector, and ask the store for our friends.

Hands-on 16

$E.store.find('friend')

[] adapter:friend borrowers/friend/adapter

[] adapter:friend undefined

[] adapter:friend borrowers/adapters/friend

[] adapter:friend undefined

[] adapter:application borrowers/application/adapter

[] adapter:application borrowers/adapters/application

[✓] adapter:application borrowers/adapters/application

[✓] adapter:application borrowers/adapters/application

[✓] adapter:application borrowers/adapters/application

GET http://localhost:4200/api/friends 404 (Not Found)

This time, when the Resolver tries to find an adapter, it works because we have one specified under
applications/adapters. We also see a failed GET request to api/friends. It fails because we are not
connected to any backend yet.

Stop the ember server and start again, but this time let’s specify that we want all our API requests
to be proxy to http://api.ember-cli-101.com. To do so we use the option –proxy:

Running ember server

$ ember server --proxy http://api.ember-cli-101.com

version: 0.1.5

Proxying to http://api.ember-cli-101.com

Livereload server on port 35729

Serving on http://0.0.0.0:4200

Go back to the console and load all our friends, but this time let’s log something with the response:

$E.store.find('friend').then(function(friends) {

friends.forEach(function(friend) {

console.log('Hi from ' + friend.get('firstName'));

});

});

XHR finished loading: GET "http://localhost:4200/api/friends".

Hi from jon

If we see ‘Hi from’ followed by a name, we have successfully specified our application adapter and
connected to the backend. The output might be different every time we run it since the API’s data
is changing.

Hands-on 17

We use the name of our model in singular form. This is important. We always reference
the models in their singular form.

Listing our friends

Now that we have successfully specified our own Adapter and made a request to our API, let’s
display our friends.

By convention, the entering point for rendering a list of any kind of resource in web applica-
tions is called the Index. This normally matches to the Root URL of our resource. With our
friends example, we do so on the backend through the following end-point http://api.ember-cli-
101.com/api/friends.json³¹. If we visit that URL, we will see a JSON list with all our friends.

If we are using Firefox or Chrome, we can use JSONView to have a readable version of
JSON in our browser. Firefox Version³² or Chrome Version³³.

In our Ember application, we need to specify somehow that every time we go to URL /friends, then
all our users should be loaded and displayed in the browser. To do this we need to specify a Route.

Routes³⁴ are one of the main parts of Ember. They are in charge of everything related to setting up
state, bootstrapping objects, specifying which template to render, etc. In our case, we need a Route
that will load all our friends from the API and then make them available to be rendered in the
browser.

Creating our first Route.

First, if we go to app/router.js, wewill notice that the resource generator added this.resource(‘friends’,
function() { });.

³¹http://api.ember-cli-101.com/api/friends
³²http://jsonview.com
³³https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc
³⁴http://emberjs.com/api/classes/Ember.Route.html

http://api.ember-cli-101.com/api/friends
http://api.ember-cli-101.com/api/friends
http://jsonview.com
https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc
http://emberjs.com/api/classes/Ember.Route.html
http://api.ember-cli-101.com/api/friends
http://jsonview.com
https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc
http://emberjs.com/api/classes/Ember.Route.html

Hands-on 18

app/router.js

// ...

Router.map(function() {

this.resource('friends', function() { });

});

// ...

We specify the URLs we want in our application inside the function passed to Router.map. There,
we can call this.route or this.resource. The rule is: if we want a simple page that is not necessarily
related with a resource, we use this.route. Otherwise, we use this.resource.

To knowmore about what a resource is, we recommend the following article on resources³⁵.

Let’s check the Routes that we have currently defined. To do so, open the ember-inspector and
click on Routes.

ember-inspector

By default, Ember creates 4 routes:

• ApplicationRoute
• IndexRoute
• LoadingRoute
• ErrorRoute

We also see that the FriendsRoute and its children were added with this.resource(‘friends’,
function() { }). Ember will create an Index, Loading, and Error Route if we pass a function as
second or third argument.

³⁵http://restful-api-design.readthedocs.org/en/latest/resources.html#resources

http://restful-api-design.readthedocs.org/en/latest/resources.html#resources
http://restful-api-design.readthedocs.org/en/latest/resources.html#resources

Hands-on 19

If we have defined the resource as this.resource(‘friends’), leaving out the empty function,
then the children won’t have been generated.

Since we have a FriendsIndexRoute, visiting http://localhost:4200/friends³⁶ should be enough to list
all our friends. But if we actually go there, the only thing we will see is a message withWelcome
to Ember.

Let’s go to app/templates/friends.hbs and change it to look like the following:

app/templates/friends.hbs

<h1>Friends Route</h1>

{{outlet}}

For people familiar with Ruby on Rails, {{outlet}} is very similar to the word yield in templates. Basi-
cally it allows us to put content into it. If we check the application templates (app/templates/application.hbs),
we’ll find the following:

app/templates/application.hbs

<h2 id='title'>Welcome to Ember</h2>

{{outlet}}

When Ember starts, it will render the Application Template as the main template. Inside {{outlet}},
it will render the template associated with the Route we are visiting. Then, inside those templates,
we can have more {{outlet}} to keep rendering content.

In our friends scenario, app/templates/friends.hbswill get rendered into the application’s template
{{outlet}}, and then it will render the Friends Index template into app/templates/friends.hbs
{{outlet}}.

To connect everything, let’s create an index template and list all our friends. Let’s run the route
generator ember g route friends/index and put the following content inside app/templates/friend-
s/index.hbs:

³⁶http://localhost:4200/friends

http://localhost:4200/friends
http://localhost:4200/friends

Hands-on 20

app/templates/friends/index.hbs

<h1>Friends Index</h1>

{{#each friend in model}}

{{friend.firstName}} {{friend.lastName}}

{{/each}}

We remove {{outlet}} from app/templates/friends/index.hbs since the Friends Index
Route won’t have any nested route.

Next, we need to specify in the Friends Index Route the data we want to load in this route. The
part in charge of loading the data related to a route is called the model hook. Let’s add one to
app/routes/friends/index.js as follows:

app/routes/friends/index.js

import Ember from 'ember';

export default Ember.Route.extend({

model: function() {

return this.store.find('friend');

}

});

Remember that the Route is responsible for everything related to setting up the application
state.

If we visit http://localhost:4200/friends³⁷ we will see something like the following along with a list
of our friends:

³⁷http://localhost:4200/friends

http://localhost:4200/friends
http://localhost:4200/friends

Hands-on 21

outlets

We played previously with store.find to load all our friends from the API and that’s what we are
doing in the model hook. Ember waits for this call to be completed. When the data is loaded, it
automatically creates a Friends Index Controller (or we can define a controller explicitly) and sets
the property model with the content returned from the API.

We can also pass a query or id to store.find, such as this.store.find(‘friend’, 1) or this.store.find(‘friend’,
{active: true}), ending in the following requests to theAPI /api/friends/1 or /api/friends?active=true.

Whenwe do {{#each friend inmodel}}, Ember (under the hood) takes every element of the collection
and set it as friend, the collection which is what the model hook returned is referenced asmodel.

If we want to display the total number of friends and the id for every friend, then we just need to
reference model.length in the template and inside the each use friend.id:

Hands-on 22

app/templates/friends/index.hbs

<h1>Friends Index</h1>

{{! The context here is the controller}}

<h2>Total friends: {{model.length}}</h2>

{{#each friend in model}}

{{friend.id}} - {{friend.firstName}} {{friend.lastName}}

{{/each}}

Again, because our model is a collection and it has the property length, we can just reference it in
the template as model.length.

Adding a new friend

We are now able to see which friends have borrowed things from us, but we don’t have a way to
add new friends. The next step is to build support for adding a new friend.

To do this we’ll need a Friends New Route under the resource friends, which will handle the URL
http://localhost:4200/friends/new.

By convention, the URL for adding a new resource is /resource_name/new. For editing
a resource, use /resource_name/:resource_id/edit and for showing a resource, use /re-
source/:resource_id.

To add the new route, run the Route generator with the parameters friends/new:

$ ember g route friends/new

installing

create app/routes/friends/new.js

create app/templates/friends/new.hbs

create tests/unit/routes/friends/new-test.js

If we go to app/router.js we’ll see that the new route was nested under the resource friends:

Hands-on 23

app/router.js

this.resource('friends', function(){

this.route('new');

});

Add the following content on the new template:

app/templates/friends/new.hbs

<h1>Add a New Friend</h1>

And then navigate to http://localhost:4200/friends/new:

FriendsNewRoute

Notice how the FriendsNewRoute got rendered in the {{outlet}} inside app/templates/friends.hbs.

We got our Route and Template wired up, but we can’t add friends yet. We need to set a new
friend instance as the model of the Friends New Route, create a form that will bind to the friend’s
attributes, and save the new friend in our backend.

Following the logic we used in the Friends Index Route, we need to return the model that will be the
context of the Friends New Route. On the model hook function, go to app/routes/friends/new.js
and add the following model hook:

Hands-on 24

import Ember from 'ember';

export default Ember.Route.extend({

model: function() {

return this.store.createRecord('friend');

}

});

We have been using the this.store without knowing what it is. The Store³⁸ is an Ember-Data class
in charge of managing everything related to our model’s data. It knows about all the records we
currently have loaded in our application and it has some functions that will help us to find, create,
update, and delete records. During the whole application life cycle there is a unique instance of the
Store, and it is injected as a property into every Route, Controller, Serializer, and Adapter under
the key store. That’s why we have been calling .store in our Routes and Controllers.

The following shows how the store is injected in every instance: store_injections³⁹.

The method we are using on the model hook store.createRecord creates a new record in our
application store, but it doesn’t save it to the backend. What we will do with this record is set
it as the model of our Friends New Route. Then, once we have filled the first and last names, we
can save it to our backend calling the method #save() in the model.

Since we will be using the same form for adding a new friend and editing, let’s create an Ember
partial⁴⁰ we can generate the template for the partial with template generator, ember g template

friends/-form and add the following content:

app/templates/friends/-form.hbs

<form {{action "save" on="submit"}}>

<p>

<label>First Name:

{{input value=model.firstName}}

</label>

</p>

<p>

<label>Last Name:

{{input value=model.lastName }}

</label>

</p>

³⁸http://emberjs.com/api/data/classes/DS.Store.html
³⁹https://github.com/emberjs/data/blob/v1.0.0-beta.10/packages/ember-data/lib/initializers/store_injections.js
⁴⁰http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_partial

http://emberjs.com/api/data/classes/DS.Store.html
https://github.com/emberjs/data/blob/v1.0.0-beta.10/packages/ember-data/lib/initializers/store_injections.js
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_partial
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_partial
http://emberjs.com/api/data/classes/DS.Store.html
https://github.com/emberjs/data/blob/v1.0.0-beta.10/packages/ember-data/lib/initializers/store_injections.js
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_partial

Hands-on 25

<p>

<label>Email:

{{input value=model.email}}

</label>

</p>

<p>

<label>Twitter

{{input value=model.twitter}}

</label>

</p>

<input type="submit" value="Save"/>

<button {{action "cancel"}}>Cancel</button>

</form>

As we mentioned in conventions, we should always use kebab-case when naming our files.
This applies the same way to partials. In ember-cli, they should start with a dash followed
by the partial name (-form.hbs). This is different from what Ember’s website suggests,
which is using an underscore.

Then we should modify the template app/templates/friends/new.hbs to include the partial:

app/templates/friends/new.hbs

<h1>Adding New Friend</h1>

{{partial "friends/form"}}

Now if we visit http://localhost:4200/friends/new, the form should be displayed.

There are some new concepts in what we just did. Let’s talk about them.

Partials

In app/templates/friends/new.hbs we used

Using partials in app/templates/friends/new.hbs

{{partial "friends/form"}}

The partial method is part of the Ember.Handlebars.helpers⁴¹ class. It is used to render other
templates in the context of the current template. In our example, the friend form is a perfect candidate
for a partial since we will be using the same form to create and edit a new friend.

⁴¹http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_partial

http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_partial
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_partial

Hands-on 26

{{action}}

The {{action}} helper is one of the most useful features in Ember. It allows us to bind an action in
the template to an action in the template’s Controller or Route. By default it is bound to the click
action, but it can be bound to other actions.

The following button will call the action cancel when we click it.

<button {{action "cancel"}}>Cancel</button>

And <form {{action “save” on=”submit”}}> will call the action save when the onsubmit event is
fired; that is, when we click Save.

We could have written the save action as part of the submit button, but for demonstration
purposes we put it in the form’s on=”submit” event.

If we go to the browser http://localhost:4200/friends/new, open the console, and click Save and
Cancel, we’ll see two errors. The first says Nothing handled the action ‘save’ and the second
Nothing handled the action ‘cancel’.

Ember expects us to define our action handlers inside the property actions in the Controller or
Route. When the action is called, Ember first looks for a definition in the Controller. If there is
none, it goes to the Route and keeps bubbling until Application Route. If any of the actions returns
false, then it stops bubbling.

Let’s create a controller for the Friends New Route and add the actions save and cancel.

To generate the Friends New Controller, we’ll run ember g controller friends/new and then
edit app/controllers/friends/new.js to add the property actions.

app/controllers/friends/new.js

import Ember from 'ember';

export default Ember.Controller.extend({

actions: {

save: function() {

console.log('+- save action in friends new controller');

return true;

},

cancel: function() {

console.log('+- cancel action in friends new controller');

Hands-on 27

return true;

}

}

});

If we go to http://localhost:4200/friends/new and click save, we’ll see in the browser’s console
“save action controller”.

Let’s check next how returning true from the action makes it bubble. Go to app/routes/friend-
s/new.js and add:

app/routes/friends/new.js

actions: {

save: function() {

console.log('+-- save action bubbled up to friends new route');

return true;

},

cancel: function() {

console.log('+-- cancel action bubbled up to friends new route');

return true;

}

}

Add in app/routes/friends.js:

app/routes/friends.js

actions: {

save: function() {

console.log('+--- save action bubbled up to friends route');

return true;

},

cancel: function() {

console.log('+--- cancel action bubbled up to friends route');

return true;

}

}

And then create the file app/routes/application.js with:

Hands-on 28

app/routes/application.js

import Ember from 'ember';

export default Ember.Route.extend({

actions: {

save: function() {

console.log('+---- save action bubbled up to application route');

return true;

},

cancel: function() {

console.log('+---- cancel action bubbled up to application route');

return true;

}

}

});

After adding actions in all those routes, if we click save or cancel we’ll see the action bubbling
through every route currently active.

+- save action in friends new controller

+-- save action bubbled up to friends new route

+--- save action bubbled up to friends route

+---- save action bubbled up to application route

Again, it is bubbling because we are returning true from every child actions. If we want the action
to stop bubbling, let’s say in the Friends Route, we just need to return false in the actions specified
in app/routes/friends.js and we’ll get:

+- save action in friends new controller

+-- save action bubbled up to friends new route

+--- save action bubbled up to friends route

As we can see, the action didn’t bubble up to the Application Route.

Whenever we have trouble understanding how our actions are going to bubble, we can go to the
ember-inspector, click Routes, and then select Current Routes only:

Hands-on 29

Actions Bubbling

As we can see, the action will bubble in the following order:

1. FriendsNewController

2. FriendsNewRoute

3. FriendsRoute

4. ApplicationRoute

How is this related to creating a new friend in our API? We’ll discover that after we cover the next
helper. Basically, on the save action, we’ll validate our model, call .save(), which saves it to the API,
and finally transition to a route where we can add new articles.

The input helper

Last we have the input helper⁴². It allows us to automatically bind a html input field to a property in
our model. With the following {{input value=firstName}}, changing the value changes the property
firstName.

If we add the following before the input buttons in app/templates/friends/-form.hbs

app/templates/friends/-form.hbs

<div>

<h2>Friend details</h2>

<p>{{model.firstName}}</p>

<p>{{model.lastName}}</p>

</div>

And then go to the browser, we’ll see that every time we change the first or last name field, this will
change the description in Friend details.

We can also use the input helper to render other types of input such as a checkbox⁴³. To do so, simply
specify type=’checkbox’.

⁴²http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_input
⁴³http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#toc_use-as-checkbox

http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_input
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#toc_use-as-checkbox
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_input
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#toc_use-as-checkbox

Hands-on 30

{{input type="checkbox" name=trusted}}

If we click the checkbox, the attribute trusted will be true. Otherwise, it will be false.

Save it!

We learned about actions, {{partial}}, and {{input}}. Now let’s save our friend to the backend.

To do so, we are going to validate the presence of all the required fields. If they are present, call
.save() on the model. Otherwise, we’ll see an error message on the form.

First we’ll modify app/templates/friends/-form.hbs to include a field {{errorMessage}}.

app/templates/friends/-form.hbs

<form {{action "save" on="submit"}}>

<h2>{{errorMessage}}</h2>

We will see the error every time we try to save a record without first filling in all the fields.

Then we’ll implement a naive validation in app/controllers/friends/new.js by adding a computed
property called isValid:

app/controllers/friends/new.js

export default Ember.Controller.extend({

isValid: Ember.computed(

'model.email',

'model.firstName',

'model.lastName',

'model.twitter',

function() {

return !Ember.isEmpty(this.get('model.email')) &&

!Ember.isEmpty(this.get('model.firstName')) &&

!Ember.isEmpty(this.get('model.lastName')) &&

!Ember.isEmpty(this.get('model.twitter'));

}

),

actions: {

....

}

});

Hands-on 31

Ember.computed? That’s new! Ember allows us to create functions that will be treated as properties.
These are called computed properties. In our example, isValid is a computed property that depends
on the propertiesmodel.email,model.firstName,model.lastName, andmodel.twitter. When any
of those properties changes, the function that we passed-in is called and the value of our property
is updated with the returned value.

In our example, we are manually checking that all the fields are not empty by using the isEmpty⁴⁴
helper.

With our naive validation in place, we can now modify our save and cancel actions:

actions in app/controllers/friends/new.js

save: function() {

if (this.get('isValid')) {

var _this = this;

this.get('model').save().then(function(friend) {

_this.transitionToRoute('friends.show', friend);

});

} else {

this.set('errorMessage', 'You have to fill all the fields');

}

return false;

},

cancel: function() {

this.transitionToRoute('friends');

return false;

}

We might wonder why we are creating a copy of this in the variable _this. The reason
is that we need to make a copy of this since the scope inside the function passed to then
will be different. For more info in JavaScript’s scope, read the blog post Scope and this in
JavaScript⁴⁵.

When the action save is called, we are first checking if isValid is true. If it is, then we get the model
and call .save(). The return of save() is a promise, which allow us to write asynchronous code in a
sync manner. The function .then receives a function that will be called when the model has been
saved successfully to the server. When this happens, it returns an instance of our friend and then
we can transition to the route FriendsShowRoute to see our friend’s profile.

⁴⁴http://emberjs.com/api/classes/Ember.html#method_isEmpty
⁴⁵http://javascriptplayground.com/blog/2012/04/javascript-variable-scope-this/

http://emberjs.com/api/classes/Ember.html#method_isEmpty
http://javascriptplayground.com/blog/2012/04/javascript-variable-scope-this/
http://javascriptplayground.com/blog/2012/04/javascript-variable-scope-this/
http://emberjs.com/api/classes/Ember.html#method_isEmpty
http://javascriptplayground.com/blog/2012/04/javascript-variable-scope-this/

Hands-on 32

If we click save and have filled all the required fields, we’ll still get an error: The route friends.show

was not found. This is because we haven’t defined a Friends Show Route. We’ll do that in the next
chapter.

For a better understanding of promises, I recommend the following talks from Ember NYC
called The Promise Land⁴⁶.

Wheneverwewant to access a property of an EmberObject, we need to use this.get(‘propertyName’).
It’s almost the same as doing object.propertyName, but it adds extra features like handling com-
puted properties. If we want to change the property of an object, we use this.set(‘propertyName’,
‘newvalue’). Again, it’s almost equivalent to doing this.propertyName = ‘newValue’, but it
adds support so the observers and computed properties that depend on the property are updated
accordingly.

Viewing a friend profile

Let’s start by creating a Friends Show Route

$ ember g route friends/show --path=:friend_id

version: 0.1.5

installing

create app/routes/friends/show.js

create app/templates/friends/show.hbs

create tests/unit/routes/friends/show-test.js

Route Generator
When creating a new route or resource we can use the route generator which takes the
options --type and --path. With typewe can use route or resource, with route being the
default. We can see the options for every generator with ember generate route --help

If we open app/router.js, we’ll see the route show nested under friends.

⁴⁶https://www.youtube.com/watch?v=mZHO1ZTsoFk#t=2439

https://www.youtube.com/watch?v=mZHO1ZTsoFk#t=2439
https://www.youtube.com/watch?v=mZHO1ZTsoFk#t=2439

Hands-on 33

app/router.js

this.resource('friends', function(){

this.route('new');

this.route('show', { path: ':friend_id' });

});

We have talked previously about path but not about dynamic segments. path: ‘:friend_id’ is
specifying a dynamic segment. This means that our route will start with /friends/ followed by an
id that will be something like /friends/12 or /friends/ned-stark. Whatever we pass to the URL, it
will be available on the model hook under params, so we can reference it like params.friend_id.
This will help us to load a specific friend by visiting the URL /friends/:friend_id. A route can have
any number of dynamic segments (e.g., path: ‘/friends/:group_id/:friend_id’.)

Now that we have a Friends Show Route, let’s start first by editing the template in app/tem-
plates/friends/show.hbs:

app/templates/friends/show.hbs

First Name: {{model.firstName}}

Last Name: {{model.lastName}}

Email: {{model.email}}

twitter: {{model.twitter}}

According to what we have covered, the next logical step would be to add a model hook on the
Friends Show Route by calling this.store.find(‘friend’, params.friend_id). However, if we go to
http://localhost:4200/friends/new and add a new friend, we’ll be redirected to the Friends Show
Route and our friend will be loaded without requiring us to write a model hook.

Why? As we have said previously, Ember is based on convention over configuration. The pattern
of having dynamic segments like model_name_id is so common that if the dynamic segment ends
with _id, then the model hook is generated automatically and it calls this.store(‘model_name’,
params.model_name_id).

Visiting a friend profile

We can navigate to http://localhost:4200/friends to see all of our friends, but we don’t have a way
to navigate to their profiles!

Fear not. Ember has a helper for that as well, and it is called {{link-to}}.

Let’s rewrite the content on app/templates/friends/index.hbs to use the helper:

Hands-on 34

app/templates/friends/index.hbs

{{#each friend in model}}

{{#link-to 'friends.show' friend}}

{{friend.firstName}} {{friend.lastName}}

{{/link-to}}

{{/each}}

When we pass our intended route and an instance of a friend to link-to, it maps the property id to
the parameter friend_id(we could also pass friend.id). Then, inside the block, we render the content
of our link tag, which would be the first and last name of our friend.

One important item to mention is that if we pass an instance of a friend to link-to, then the
model hook in the Friends Show Route won’t be called. If we want the hook to be called, instead
of doing {{#link-to 'friends.show' friend}}, we’ll have to do {{#link-to 'friends.show'

friend.id}}.

Check this example in JS BIN http://emberjs.jsbin.com/bupay/2/ that shows the behavior
of link-to with an object and with an id.

The resulting HTML will look like the following

Output for link-to helper

Jon Snow

If our friend model had a property called fullName, we could have written the helper like:

Using a computed for the link content

{{link-to friend.fullName 'friends.show' friend}}

We already talked about computed properties, so let’s add one called fullName to app/model-
s/friend.js

Hands-on 35

app/models/friend.js

import DS from 'ember-data';

import Ember from 'ember';

export default DS.Model.extend({

firstName: DS.attr('string'),

lastName: DS.attr('string'),

email: DS.attr('string'),

twitter: DS.attr('string'),

totalArticles: DS.attr('number'),

fullName: Ember.computed('firstName', 'lastName', function() {

return this.get('firstName') + ' ' + this.get('lastName');

})

});

The computed property depends on firstName and lastName. Any time either of those properties
changes, so will the value of fullName.

Once we have the computed property, we can rewrite link-to as follows:

Using friend.fullName in app/templates/friends/index.hbs

{{link-to friend.fullName 'friends.show' friend}}

Now we’ll be able to visit any of our friends! Next, let’s add support to edit a friend.

Quick Task

1. Add a link so we can move back and forth between a friend’s profile and the friends index.
2. Add a link so we can move from app/templates/index.hbs to the list of friends (might need

to generate the missing template).

Updating a friend profile

By now it should be clear what we need to update a friend:

1. Create a route with the ember generator.
2. Fix path in routes.
3. Update the template.
4. Add Controller and actions.

To create the Friends Edit Route we should run:

Hands-on 36

$ ember g route friends/edit --path=:friend_id/edit

version: 0.1.5

installing

create app/routes/friends/edit.js

create app/templates/friends/edit.hbs

installing

create tests/unit/routes/friends/edit-test.js

The nested route edit should looks as follows under the the resource friends:

app/router.js

this.resource('friends', function(){

this.route('new');

this.route('show', { path: ':friend_id' });

this.route('edit', { path: ':friend_id/edit' });

});

Since the route’s path follows the pattern model_name_id, we don’t need to specify a
model hook.

Then we should modify the template app/templates/friends/edit.hbs to render the friend’s form:

app/templates/friends/edit.hbs

<h1>Editing {{model.fullName}}</h1>

{{partial 'friends/form'}}

With that in place, let’s go to a friend’s profile and then append /edit in the browser (e.g.,
http://localhost:4200/friends/2/edit.)

Hands-on 37

Friends Edit

Thanks to the partial, we have the same form as in the new template without writing anything
extra. If we open the browser’s console and click on Save and Cancel, we’ll see that nothing is
handling those actions in the Friend Edit Controller and that they are bubbling up the hierarchy
chain.

Let’s now implement those actions. The save action will behave exactly as the one in new. We’ll do
the validations and then, when it has saved successfully, redirect to the profile page. cancel will be
different; instead of redirecting to the Friends Index Route, we’ll redirect back to the profile page.

We’ll create the controller using ember g controller.

$ ember g controller friends/edit

version: 0.1.5

installing

create app/controllers/friends/edit.js

installing

create tests/unit/controllers/friends/edit-test.js

Hands-on 38

Then we can write the same computed property to check whether the object is valid, as well as to
check the save and cancel actions.

Write the following in app/controllers/friends/edit.js:

app/controllers/friends/edit.js

import Ember from 'ember';

export default Ember.Controller.extend({

isValid: Ember.computed(

'model.email',

'model.firstName',

'model.lastName',

'model.twitter',

function() {

return !Ember.isEmpty(this.get('model.email')) &&

!Ember.isEmpty(this.get('model.firstName')) &&

!Ember.isEmpty(this.get('model.lastName')) &&

!Ember.isEmpty(this.get('model.twitter'));

}

),

actions: {

save: function() {

if (this.get('isValid')) {

var _this = this;

this.get('model').save().then(function(friend) {

_this.transitionToRoute('friends.show', friend);

});

} else {

this.set('errorMessage', 'You have to fill all the fields');

}

return false;

},

cancel: function() {

this.transitionToRoute('friends.show', this.get('model'));

return false;

}

}

});

If we refresh our browser, edit the profile, and click save, we’ll see our changes applied successfully!
We can also check that clicking cancel takes us back to the user’s profile.

Hands-on 39

To transition from a controller, we have been using this.transitionToRoute. It’s a helper that
behaves similarly to the {{link-to}} helper but from within a controller. If we were in a Route,
we could have used this.transitionTo.

Refactoring

Both our Friends New Controller and Friends Edit Controller share pretty much the same
implementation. Let’s refactor that creating a base class from which both will inherit.

The only thing that will be different is the cancel action. Let’s create our base class and then override
in every controller according to our needs.

Create a base controller:

$ ember g controller friends/base

version: 0.1.5

installing

create app/controllers/friends/base.js

installing

create tests/unit/controllers/friends/base-test.js

And put the following content in it

app/controllers/friends/base.js

import Ember from 'ember';

export default Ember.Controller.extend({

isValid: Ember.computed(

'model.email',

'model.firstName',

'model.lastName',

'twitter',

function() {

return !Ember.isEmpty(this.get('model.email')) &&

!Ember.isEmpty(this.get('model.firstName')) &&

!Ember.isEmpty(this.get('model.lastName')) &&

!Ember.isEmpty(this.get('model.twitter'));

}

),

actions: {

save: function() {

if (this.get('isValid')) {

var _this = this;

Hands-on 40

this.get('model').save().then(function(friend) {

_this.transitionToRoute('friends.show', friend);

});

} else {

this.set('errorMessage', 'You have to fill all the fields');

}

return false;

},

cancel: function() {

return true;

}

}

});

We left isValid and save exactly as they were, but we have no implementation in the cancel action
(we just let it bubble up).

We can now replace app/controllers/friends/new.js to inherit from base and override the cancel
action:

app/controllers/friends/new.js

import FriendsBaseController from './base';

export default FriendsBaseController.extend({

actions: {

cancel: function() {

this.transitionToRoute('friends.index');

return false;

}

}

});

And app/controllers/friends/edit.js with:

Hands-on 41

app/controllers/friends/edit.js

import FriendsBaseController from './base';

export default FriendsBaseController.extend({

actions: {

cancel: function() {

this.transitionToRoute('friends.show', this.get('model'));

return false;

}

}

});

If we don’t override the action, Ember will use the one specified in the base class.

Visiting the edit page.

We can edit a friend now, but we need a way to reach the edit screen from the user profile page.
To do that, we should add a {{link-to}} in our app/templates/friends/show.hbs.

app/templates/friends/show.hbs

First Name: {{model.firstName}}

Last Name: {{model.lastName}}

Email: {{model.email}}

twitter: {{model.twitter}}

{{link-to "Edit info" "friends.edit" model}}

If we go to a friend’s profile and click Edit info, we’ll be taken to the edit screen page.

To see all the changes related to this section, refer to the following commit on the project
repository Allow to update profiles⁴⁷.

⁴⁷https://github.com/abuiles/borrowers/commit/79601014b1567e0ef5c2fda2cd300f3483fa6b22

https://github.com/abuiles/borrowers/commit/79601014b1567e0ef5c2fda2cd300f3483fa6b22
https://github.com/abuiles/borrowers/commit/79601014b1567e0ef5c2fda2cd300f3483fa6b22

Hands-on 42

Deleting friends

We have decided not to lend anything to a couple of friends ever again after they took our beloved
The Dark Side of the Moon vinyl and returned it with scratches.

It’s time to add support to delete some friends from our application. We want to be able to delete
them directly within their profile page or when looking at the index.

By now it should be clear how we will do this. Let’s use actions.

Our destroy actions will call model#destroyRecord()⁴⁸ and then this.transitionTo to the Friends
Index Route.

Let’s replace our app/templates/friends/index.hbs so it includes the delete action:

app/templates/friends/index.hbs

<h1>Friends Index</h1>

<h2>Friends: {{model.length}}</h2>

<table>

<thead>

<tr>

<th>Name</th>

<th></th>

</tr>

</thead>

<tbody>

{{#each friend in model}}

<tr>

<td>{{link-to friend.fullName "friends.show" friend}}</td>

<td>Delete</td>

</tr>

{{/each}}

</tbody>

</table>

And then add the action delete. This time let’s put the delete action on the route app/routes/friend-
s/index.js:

⁴⁸http://emberjs.com/api/data/classes/DS.Model.html#method_destroyRecord

http://emberjs.com/api/data/classes/DS.Model.html#method_destroyRecord
http://emberjs.com/api/data/classes/DS.Model.html#method_destroyRecord

Hands-on 43

app/routes/friends/index.js

import Ember from 'ember';

export default Ember.Route.extend({

model: function() {

return this.store.find('friend');

},

actions: {

delete: function(friend) {

friend.destroyRecord();

return false;

}

}

});

To support deletion on Friends Show Route, we just need to add the same link with the
action delete and implement the action. Again, we’ll put it in the route’s actions. In this case,
app/routes/friends/show.js:

app/routes/friends/show.js

import Ember from 'ember';

export default Ember.Route.extend({

actions: {

delete: function(friend) {

friend.destroyRecord();

this.transitionTo('friends.index');

}

}

});

With that we can now create, update, edit, and delete any of our friends!

Refactoring Time

If we check what we just did, we’ll notice that both delete actions are identical except that the one
in the index doesn’t need to transition since it is already there.

For this specific scenario, calling this.transitionTo(‘friends.index’) from within the Friends Index
Route will behave like a no-op. This is important to mention because we could have one single
implementation for the delete action and access it via event bubbling.

Hands-on 44

We can put the delete action in app/routes/friends.js, which is the parent route for both Friends
Index Route and Friends New Route:

app/routes/friends.js

import Ember from 'ember';

export default Ember.Route.extend({

actions: {

save: function() {

console.log('save action bubbled to friends route');

return true;

},

cancel: function() {

console.log('cancel action bubbled to friends route');

return true;

},

delete: function(friend) {

friend.destroyRecord();

this.transitionTo('friends.index');

}

}

});

And delete both actions from app/routes/friends/index.js and app/routes/friends/show.js.

app/routes/friends/index.js

import Ember from 'ember';

export default Ember.Route.extend({

model: function() {

return this.store.find('friend');

}

});

Hands-on 45

app/routes/friends/show.js

import Ember from 'ember';

export default Ember.Route.extend({});

Let’s breathe slowly and take a moment to enjoy that fresh feeling of deleting repeated code…

Done?

Next, let’s add some styling to our project. We don’t want to show this to our friends as it is right
now.

Mockups

Before changing our templates, we’ll review a couple of mockups to have an idea of how our pages
are going to look.

Friends Index

Friends Index

We’ll have a header that will take us to a dashboard, the friends index page, and about page.
Additionally, we can insert some content depending on which route we are visiting. In the Friends
Index Route we’ll see a search box to filter users.

Then we’ll have a table that can be ordered alphabetically or by number of items.

Hands-on 46

Friend Profile

Friend Profile

Our friend profile will show us the user’s data with an avatar that we might pull from Gravatar.

We have links to add new articles, edit the user’s info, or delete the user’s profile.

At the bottom we’ll have the list of all the articles the user has borrowed with options to mark them
as returned or to send a reminder.

If we are careful, we’ll also notice that the URL looks a little different from what we currently have.
After the friend id, we see /articles (..com/friends/1/articles). Whenever we visit the user profile,
the nested resource articles will be rendered by default. We haven’t talked about it yet, but basically
we are rendering a resource under our Friends Show Route that will defer all responsibility of
managing state, handling actions, etc. to a different Controller and Route.

Hands-on 47

Dashboard

Dashboard

The third mockup is a dashboard where we can ask questions like, “how many articles have we lent
to our friends” and “who’s the friend with the most articles?” We can also see the number of articles
borrowed per day.

Installing Dependencies

To save time, we’ll be using picnicss⁴⁹ as our base CSS and fontello for icons.

Including picnicss

Since picnicss is a front-end dependency, we can use Bower to manage such a dependency for us.

First we need to include the following in the file bower.json:

⁴⁹http://picnicss.com

http://picnicss.com
http://picnicss.com

Hands-on 48

Adding picnic to bower.json

"picnic": "https://github.com/picnicss/picnic.git"

Next run bower install. Once it is finished, we’ll find the picnic assets under bower_compo-
nents/picnic/.

The fact that they are there doesn’t mean that they’ll be included in our assets. We still need to tell
ember-cli that we want to import those assets into our application. To do so, we need to add the
following line to our Brocfile.js before module.exports = app.toTree();

Adding picnic to the Brocfile

/* global require, module */

var EmberApp = require('ember-cli/lib/broccoli/ember-app');

var app = new EmberApp();

app.import('bower_components/picnic/releases/v2.min.css');

module.exports = app.toTree();

app.import is a helper function that tells ember-cli to append bower_components/picnic/releas-
es/v2.min.css into our assets. By default it will put any CSS file we import into /vendor.css and
any JavaScript file into /vendor.js.

If we check app/index.html, we’ll see 2 CSS files included:

app/index.html

<link rel="stylesheet" href="assets/vendor.css">

<link rel="stylesheet" href="assets/borrowers.css">

The first one contains all the imported (vendor) CSS files and the second one contains the CSS files
we defined under app/styles.

Why have two separate CSS and JavaScript files? Vendor files are less likely to change, so
we can take advantage of caching when we deploy our application. While our app CSS
and JS might change, vendor files will stay the same, allowing us to take advantage of the
cache.

After modifying our Brocfilewe need to stop and start the server again so the changes are applied.
Oncewe have done that, we canwe refresh our browser and go tohttp://localhost:4200/assets/vendor.css,
we’ll see that the code for picnicss is there.

Hands-on 49

Including fontello

Because fontello⁵⁰ doesn’t have a custom distribution we can download with bower, we’ll download
a bundle of icons and fonts that we can manage manually by putting it under vendor/fontello.

With bower dependencies, we don’t have to worry about keeping things under our revision
control system because bower will take care of downloading them for us. Howevever, we
do have to keep track of dependencies not managed by bower.

We can download a bundle from the following URL http://cl.ly/3y1W1B3Y4028 and then put the
content under vendor/, which will give us the directory vendor/fontello.

In order to tell ember-cli that we want to include fontello’s CSS and fonts, we need to modify our
Brocfile as follows:

Brocfile.js

var EmberApp = require('ember-cli/lib/broccoli/ember-app');

var app = new EmberApp();

app.import('vendor/fontello/fontello.css');

app.import('vendor/fontello/font/fontello.ttf', {

destDir: 'font'

});

app.import('vendor/fontello/font/fontello.eot', {

destDir: 'font'

});

app.import('vendor/fontello/font/fontello.svg', {

destDir: 'font'

});

app.import('vendor/fontello/font/fontello.woff', {

destDir: 'font'

});

We are already familiar with the line to import fontello.css, but the following ones are new to us
since we have never passed any option to import.

The option destDir tells ember-cli that we want to put those files under a directory called font. If
we save and refresh our browser, vendor.css should now include fontello.css. We can also check
the files in font by going to http://localhost:4200/font.

⁵⁰http://fontello.com/

http://fontello.com/
http://fontello.com/

Hands-on 50

Check the change on GitHub by visiting the following commit: Add fontello and picnicss⁵¹.

With that, we know the basics of including vendor files. Now that we have our basic dependencies
on hand, let’s improve the appearance of our templates.

The header

We’ll use partials as much as possible to simplify our templates. In this case, we’ll create a partial
that contains the code for the navigation bar. Create the file app/templates/partials/-header.hbs
with the following content:

app/templates/partials/-header.hbs

<nav>

{{link-to "Borrowers" "index" class="main"}}

<!-- responsive -->

<input id="bmenu" class="burgercheck" type="checkbox">

<label for="bmenu" class="burgermenu"></label>

<!-- /responsive -->

<div class="menu">

{{link-to "Dashboard" "index" class="icon-gauge"}}

{{link-to "Friends" "friends" class="icon-users-1"}}

{{link-to "New Friend" "friends.new" class="icon-user-add"}}

</div>

</nav>

The header should always be visible in our application. In Ember, the right receptacle for that content
would be the Application Template since it will contain any other template inside its {{outlet}}.

Modify app/templates/application.hbs as follows:

⁵¹https://github.com/abuiles/borrowers/commit/90a1ea3fe6320ad1746b4c0ab4069401d2fd6247

https://github.com/abuiles/borrowers/commit/90a1ea3fe6320ad1746b4c0ab4069401d2fd6247
https://github.com/abuiles/borrowers/commit/90a1ea3fe6320ad1746b4c0ab4069401d2fd6247

Hands-on 51

app/templates/application.hbs

{{partial 'partials/header'}}

<div class="row">

<div class="full">

{{outlet}}

</div>

</div>

We will render the header and wrap the outlet in a row using picnicss classes.

If we refresh, the header should display nicely.

Friends Index

First, let’s remove the <h1> from app/templates/friends.hbs so it only contains {{outlet}}. Next,
clean up app/templates/friends/index.hbs so it adds the class primary to the table:

app/templates/friends/index.hbs

<table class="primary">

<thead>

<tr>

<th>Name</th>

<th>Articles</th>

<th></th>

</tr>

</thead>

<tbody>

{{#each friend in model}}

<tr>

<td>{{link-to friend.fullName "friends.show" friend}}</td>

<td>{{friend.totalArticles}}</td>

<td>delete</td>

</tr>

{{/each}}

</tbody>

</table>

Then we need to add some extra styling to the table. We want it to be full width, so let’s modify
app/styles/app.css as follows:

Hands-on 52

app/styles/app.css

body {

display: block;

text-align: center;

color: #333;

background: #FFF;

margin: 80px auto;

width: 100%;

}

table {

width: 100%;

}

Now if we visit http://localhost:4200/friends, we should see:

Friends Index

New Friend And Friend profile template

Next let’s modify app/templates/friends/-form.hbs

Hands-on 53

app/templates/friends/-form.hbs

<form {{action "save" on="submit"}}>

<h2>{{errorMessage}}</h2>

<fieldset>

{{input value=model.firstName placeholder='First Name'}}</br>

{{input value=model.lastName placeholder='Last Name'}}</br>

{{input value=model.email placeholder='email'}}</br>

{{input value=model.twitter placeholder='twitter'}}</br>

<input type="submit" value="Save" class="primary">

<button {{action "cancel"}}>Cancel</button>

</fieldset>

</form>

And finally, change app/templates/friends/show.hbs.

app/templates/friends/show.hbs

<div class="friend-profile">

<p>{{model.firstName}}</p>

<p>{{model.lastName}}</p>

<p>{{model.email}}</p>

<p>{{model.twitter}}</p>

<p>{{link-to "Edit info" "friends.edit" model}}</p>

<p>delete</p>

</div>

The Dashboard

By default, we’ll use theApplication Index Route as the dashboard. For now, we are going to create
the file app/templates/index.hbs and write <h2>Dashboard</h2>.

Let’s move on with more functionality.

Articles Resource

With our Friends CRUD ready, we can start lending articles.

Let’s create an articles resource:

Hands-on 54

$ ember generate resource articles createdAt:date description:string notes:strin\

g state:string

create app/models/article.js

create tests/unit/models/article-test.js

create app/routes/articles.js

create app/templates/articles.hbs

create tests/unit/routes/articles-test.js

Let’s check the model.

app/models/article.js

import DS from 'ember-data';

export default DS.Model.extend({

createdAt: DS.attr('date'),

description: DS.attr('string'),

notes: DS.attr('string'),

state: DS.attr('string')

});

We have defined our Articles model successfully, but we need to wire the relationship between
Friends and Articles. Let’s do that next.

Defining relationships.

We have to specify that a friend can have many articles and that those articles belong to a friend.
In other frameworks this is known as hasMany and belongsTo relationships, and so they are in
Ember-Data.

Remember, Ember doesn’t include data handling support by default. This is accomplished
through Ember-Data, which is the official library for this.

If we want to add a hasMany relationship to our models, we write:

articles: DS.hasMany('article')

Or we want a belongsTo:

Hands-on 55

friend: DS.belongsTo('friend')

Using the previous relationship types, we can modify our Article model:

app/models/article.js

import DS from 'ember-data';

export default DS.Model.extend({

createdAt: DS.attr('date'),

description: DS.attr('string'),

friend: DS.belongsTo('friend'),

notes: DS.attr('string'),

state: DS.attr('string')

});

And our Friend model to add the hasMany to articles:

app/models/friend.js

import DS from 'ember-data';

import Ember from 'ember';

export default DS.Model.extend({

articles: DS.hasMany('article'),

email: DS.attr('string'),

firstName: DS.attr('string'),

lastName: DS.attr('string'),

totalArticles: DS.attr('number'),

twitter: DS.attr('string'),

fullName: Ember.computed('firstName', 'lastName', function() {

return this.get('firstName') + ' ' + this.get('lastName');

})

});

With just those two lines, we have added a relationship between our models. Now let’s work on the
Articles resource.

Specifying relationships with the generator.
We can add hasMany orbelongsTo relationships when running the generator, we didn’t use
it when we created the articles resource so we could explain relationships, but we could
have done the following: ember g resource articles friend:belongsTo

Hands-on 56

Nested Articles Index

In our Friend Profile mockup, we specified that we wanted to render the list of articles as a nested
route inside the friend profile.

If we look again at the mockup now highlighting the nested routes,

Friend Profile with nested routes

the part in red corresponds to the Friends Show Route while the part in blue is where all routes
belonging to the resource Articles will go.

We need to make a couple of changes to handle this scenario. First we need to make sure that articles
is specified as a nested resource inside Friends Show. Let’s go to our app/router.js and change it to
reflect this:

app/router.js

this.resource('friends', function(){

this.route('new');

this.route('show', { path: ':friend_id' }, function() {

this.resource('articles', function() { });

});

this.route('edit', { path: ':friend_id/edit' });

});

export default Router;

Hands-on 57

Now let’s open the ember-inspector and check our newly defined routes:

Nested Articles Routes

We can identify the routes and controllers that Ember expects us to define for the new resource.

Next we need to add an {{outlet }} to app/templates/friends/show.hbs, which is where the nested
routes will render:

app/templates/friends/show.hbs

<div class="friend-profile">

<p>{{model.firstName}}</p>

<p>{{model.lastName}}</p>

<p>{{model.email}}</p>

<p>{{model.twitter}}</p>

<p>{{link-to "Edit info" "friends.edit" model}}</p>

<p>delete</p>

</div>

<div class="articles-container">

{{outlet}}

</div>

Any nested route or resource will be rendered by default into its parent’s {{outlet}}.

Rendering the index.

Let’s create a new file called app/templates/articles/index.hbs and write the following:

app/templates/articles/index.hbs

<h2>Articles Index</h2>

If we visit a friend profile, we won’t see anything related with the Articles Index Route. Why?
Well, we are not visiting that route, that’s why. To get to the Articles Index Route, we need to
modify the link-to in app/templates/friends/index.hbs to reference the route articles instead of
friends.show. We’ll still pass the friend as an argument since the route articles is nested under
friends.show and it has the dynamic segment :friend_id.

Hands-on 58

app/templates/friends/index.hbs

<td>{{link-to friend.fullName "articles" friend}}</td>

Now, with the previous change, if we go to the friends index and visit any profile, we’ll seeArticles
Index at the bottom.

Opening the ember-inspector and filtering by *Current Route only**, we’ll see:

Articles Index Route

Routes are resolved from top to bottom, so when we navigate to /friends/1/articles it will go first
to the ApplicationRoute and move to FriendsShowRoute to fetch our friend. Once it is loaded, it
will move to ArticlesIndexRoute.

Next we need to define the model hook for the ArticlesIndexRoute.

Fetching our friend articles.

Let’s add the Articles Index Route to the generator and reply ‘no’ when it asks us if we want to
overwrite the template.

$ ember g route articles/index

version: 0.1.5

installing

[?] Overwrite /borrowers/app/templates/articles/index.hbs? (Yndh) n

Overwrite /borrowers/app/templates/articles/index.hbs? No, skip

create app/routes/articles/index.js

skip app/templates/articles/index.hbs

installing

create tests/unit/routes/articles/index-test.js

In app/routes/articles/index.js, load the data using the model hook:

Hands-on 59

app/routes/articles/index.js

import Ember from 'ember';

export default Ember.Route.extend({

model: function() {

return this.modelFor('friends/show').get('articles');

}

});

In the model hook, we are using a new function this.modelFor⁵² that helps us grab the model for any
parent route. In this scenario, parent routes are all the ones appearing on top of ArticlesIndexRoute
in the ember-inspector.

Once we get the model for FriendsShowRoute, we simply ask for its articles. And that’s what we
are returning.

We need to modify the app/templates/articles/index.hbs so it displays the articles:

app/templates/articles/index.hbs

<table class="primary">

<thead>

<tr>

<th>Description</th>

<th>Borrowed since</th>

<th></th>

<th></th>

</tr>

</thead>

<tbody>

{{#each article in model}}

<tr>

<td>{{article.description}}</td>

<td>{{article.createdAt}}</td>

<td></td>

<td></td>

</tr>

{{/each}}

</tbody>

</table>

⁵²http://emberjs.com/api/classes/Ember.Route.html#method_modelFor

http://emberjs.com/api/classes/Ember.Route.html#method_modelFor
http://emberjs.com/api/classes/Ember.Route.html#method_modelFor

Hands-on 60

If our friend doesn’t have articles yet, we can use the ember-inspector to add some manually.

Let’s open the ember-inspector and select the model from the route *friends.show**:

Select Friend Model

Once we have the instance of a friend assigned to the variable $E, let’s run the following on the
browser’s console:

$E.get('articles').createRecord({description: 'foo'})

$E.get('articles').createRecord({description: 'bar'})

We will notice that our Friend Index updates automatically with the records we create.

So far we are only putting records into the store, but they are not being saved to our backend. To do
that we’ll need to call save() on every instance. Let’s try to call save:

$E.get('articles').createRecord({description: 'foo'}).save()

We will notice that a POST is attempted to our backend, but it gets rejected because the model is
not valid:

Error: The backend rejected the commit because it was invalid: {state: can't be \

blank,is not included in the list}

Let’s add the route Articles New and the template so we can lend new articles to our friends.

Check the following commit to review all the changes of the previous chapter: Add articles
index⁵³

⁵³https://github.com/abuiles/borrowers/commit/4346a795210ba3d46d02952611f0b91f9f140434

https://github.com/abuiles/borrowers/commit/4346a795210ba3d46d02952611f0b91f9f140434
https://github.com/abuiles/borrowers/commit/4346a795210ba3d46d02952611f0b91f9f140434
https://github.com/abuiles/borrowers/commit/4346a795210ba3d46d02952611f0b91f9f140434

Hands-on 61

Sideloading Articles

If we visit http://api.ember-cli-101.com/api/friends⁵⁴, we’ll notice that there is no information about
any of our friends’ articles. We omit that information intentionally so the early version of the
application won’t break.

However, from now on, we need to include the articles so that they are displayed when we
visit a friend’s profile. To accomplish this we’ll use version 2 (V2) of the borrowers backend
API, which includes the articles for every user. We can try it out by visiting http://api.ember-cli-
101.com/api/v2/friends⁵⁵.

How do we use the new version of the API? We need to modify the property namespace in the
application adapter so it refers to api/v2. Let’s change app/adapters/application.js to look like the
following:

app/adapters/application.js

import DS from 'ember-data';

export default DS.ActiveModelAdapter.extend({

namespace: 'api/v2'

});

Once we have made that change, we’ll consume the new version of the API.

Sideloading data is one of the different strategies we have in Ember-Data to work with
relationships. We’ll explore other alternatives in a later chapter dedicated to Ember-Data.

Lending new articles

Let’s start by adding the route. We’ve done it with the generator up to this point, but now we’ll do
it manually.

We need to add the nested route new under the resource articles:

⁵⁴http://api.ember-cli-101.com/api/friends
⁵⁵http://api.ember-cli-101.com/api/v2/friends

http://api.ember-cli-101.com/api/friends
http://api.ember-cli-101.com/api/v2/friends
http://api.ember-cli-101.com/api/v2/friends
http://api.ember-cli-101.com/api/friends
http://api.ember-cli-101.com/api/v2/friends

Hands-on 62

app/router.js

import Ember from 'ember';

import config from './config/environment';

var Router = Ember.Router.extend({

location: config.locationType

});

Router.map(function() {

this.resource('friends', function() {

this.route('new');

this.route('show', { path: ':friend_id' }, function() {

this.resource('articles', function() {

this.route('new');

});

});

this.route('edit', { path: ':friend_id/edit' });

});

});

export default Router;

Then let’s create the route app/routes/articles/new.js with the model hook and actions support:

app/routes/articles/new.js

import Ember from 'ember';

export default Ember.Route.extend({

model: function() {

return this.store.createRecord('article', {

state: 'borrowed',

friend: this.modelFor('friends/show')

});

},

actions: {

save: function() {

var _this = this;

var model = this.modelFor('articles/new');

model.save().then(function(){

_this.transitionTo('articles');

Hands-on 63

});

},

cancel: function() {

this.transitionTo('articles');

}

}

});

In the model hook we use this.store.createRecord⁵⁶, which creates a new instance of a model in the
store. It takes the name of the model we’re creating and its properties.

We pass the property friend and state. The former will make sure that the article is linked with our
friend, and the latter is simply setting the state attribute. We’ll start it in borrowed.

Ember-Data allows us to specify a defaultValue for our attributes. We can use that instead of doing
it explicitly in the model hook. In app/models/article.js, let’s replace the definition of state so it
looks as follows:

app/models/article.js

state: DS.attr('string', {

defaultValue: 'borrowed'

})

Then we can modify our model in app/routes/articles/new.js so it doesn’t add the initial state:

app/routes/articles/new.js

model: function() {

return this.store.createRecord('article', {

friend: this.modelFor('friends/show')

});

},

In our friends example we put the save and cancel actions in the controller, but this time we are
defining it in the route. The question is: where do we need to put this kind of action?

We used both strategies as an example that we can get to the same results using either the route or
controller. However, the rule of thumb is that we keep every action thatmodifies our application state
in the routes and use the controllers as decorators for our templates. Actions like saving, destroying,
and creating new objects are best fit for the route.

⁵⁶http://emberjs.com/api/data/classes/DS.Store.html#method_createRecord

http://emberjs.com/api/data/classes/DS.Store.html#method_createRecord
http://emberjs.com/api/data/classes/DS.Store.html#method_createRecord

Hands-on 64

Common patterns on resource routes model
hooks

• Edit and Show Route: return this.store.find(‘modelName’, modelId)
• Create Route: return this.store.createRecord(‘modelName’, properties)
• Index Route: return this.store.find(‘modelName’)

Next we need to add the new template. Since we might want to reuse the form, let’s add it in a
partial and then include it in the template app/templates/articles/new.hbs.

We’ll create the -form partial in app/templates/articles/-form.hbs. Remember, partial names begin
with a dash:

app/templates/articles/-form.hbs

<form>

<h2>{{errorMessage}}</h2>

<fieldset>

{{input value=model.description placeholder='Description'}}</br>

{{input value=model.notes placeholder='Notes'}}</br>

<button {{action "save"}} class="primary">Save</button>

<button {{action "cancel"}}>Cancel</button>

</fieldset>

</form>

Then include it in app/templates/articles/new.hbs:

app/templates/articles/new.hbs

<h2> Lending new articles</h2>

{{partial "articles/form"}}

We are almost done. We have set up the route and template, but we still haven’t added a link to
navigate to the Articles New Route. Let’s add link-to to articles.new in app/templates/friend-
s/show.hbs:

Hands-on 65

app/templates/friends/show.hbs

<div class="friend-profile">

<p>{{model.firstName}}</p>

<p>{{model.lastName}}</p>

<p>{{model.email}}</p>

<p>{{model.twitter}}</p>

<p>{{link-to "Lend article" "articles.new"}}</p>

<p>{{link-to "Edit info" "friends.edit" model}}</p>

<p>delete</p>

</div>

<div class="articles-container">

{{outlet}}

</div>

We are creating the link with {{link-to "Lend articles" "articles.new"}}. Since we’re already
in the context of a friend, we don’t need to specify the dynamic segment. If we want to add the
same link in the Friends Index Route, we’ll need to pass the parameter as {{link-to “Lend articles”
“articles.new” friend}} where friend is an instance of a friend.

Tasks
Create an Articles New Controller and validate that the model includes description. If it
is valid, let the action bubble to the route. Otherwise, set an errorMessage.

Click the following link for a list of changes introduced in this chapter:
http://git.io/wYEikg⁵⁷.

⁵⁷http://git.io/wYEikg

http://git.io/wYEikg
http://git.io/wYEikg

Hands-on 66

Computed Property Macros

In app/controllers/friends/base.js, we define the computed property isValid with the following
code:

Computed Property isValid is app/controllers/friends/base.js

isValid: Ember.computed(

'model.email',

'model.firstName',

'model.lastName',

'model.twitter',

function() {

return !Ember.isEmpty(this.get('model.email')) &&

!Ember.isEmpty(this.get('model.firstName')) &&

!Ember.isEmpty(this.get('model.lastName')) &&

!Ember.isEmpty(this.get('model.twitter'));

}

),

Although the previous code does what we expect, it is not the most pleasant to read, especially with
all those nested &&’s. As it turns out, Ember has a set of helper functions that will allow us to write
the previous code in a more idiomatic way using something called computed property macros.

Computed property macros are a set of functions living under Ember.computed. that allow us to
create computed properties in an easier, more readable and clean way.

As an example, let’s take two computed property macros and write our isValid on terms of them:

• Ember.computed.and⁵⁸
• Ember.computed.notEmpty⁵⁹

⁵⁸http://emberjs.com/api/#method_computed_and
⁵⁹http://emberjs.com/api/#method_computed_notEmpty

http://emberjs.com/api/#method_computed_and
http://emberjs.com/api/#method_computed_notEmpty
http://emberjs.com/api/#method_computed_and
http://emberjs.com/api/#method_computed_notEmpty

Hands-on 67

Computed Property With Macros in app/controllers/friends/base.js

export default Ember.Controller.extend({

hasEmail: Ember.computed.notEmpty('model.email'),

hasFirstName: Ember.computed.notEmpty('model.firstName'),

hasLastName: Ember.computed.notEmpty('model.lastName'),

hasTwitter: Ember.computed.notEmpty('model.twitter'),

isValid: Ember.computed.and(

'hasEmail',

'hasFirstName',

'hasLastName',

'hasTwitter'

),

// actions omitted

This is certainly much cleaner and less error-prone.

We can see the full list of computed properties with Ember.computed.alias⁶⁰.

Using Item controller to mark an article as returned.

We lent our favorite Whisky glass to one of our friends and they just returned it. We need to mark
the item as returned.

Our interface will look similar to the following. We can select the state of the article within the
articles index. Whenever that article has pending changes, we’ll see a save button.

Articles Index with Selector

When rendering an Ember.ArrayController, we can specify an item controller that will wrap every
object we have in the collection.

Item controllers are very useful because they allow us to remove responsibility from the model and
delegate it to a class that will handle everything related to that record. In this scenario, we’ll use an
item controller to wrap every element. It will include a property called states that will represent the
possible values for the selection.

Let’s create an articles/item controller that will be used to wrap every article when rendering a
collection.

⁶⁰http://emberjs.com/api/#method_computed_alias

http://emberjs.com/api/#method_computed_alias
http://emberjs.com/api/#method_computed_alias

Hands-on 68

Creating an item controller

$ ember g controller articles/item

version: 0.1.5

installing

create app/controllers/articles/item.js

installing

create tests/unit/controllers/articles/item-test.js

Item Controllers don’t have to be called ‘item.’ We can use any name, but we select item
since it helps us to understand its role.

Let’s modify the item controller so it looks as follows:

app/controllers/articles/item.js

import Ember from 'ember';

export default Ember.Controller.extend({

states: ['borrowed', 'returned']

});

We said previously that the main responsibility of the controller is to serve as the template decorator.
In this case, the controller contains information about the possible states a user can select.

Next we can use the itemController in app/templates/articles/index.hbs. Let’s modify each part
so it looks as follows:

Item Controller in app/templates/articles/index.hbs

{{#each itemController='articles/item'}}

<tr>

<td>{{model.description}}</td>

<td>{{model.notes}}</td>

<td>{{model.createdAt}}</td>

<td>{{view "select" content=states selection=model.state}}</td>

<td>

{{#if model.isSaving}}

<p>Saving ...</p>

{{else}}

{{#if model.isDirty}}

<button {{action "save" model}}>Save</button>

Hands-on 69

{{/if}}

{{/if}}

</td>

</tr>

{{/each}}

Here we are using three new things.

First, we specify the item controller in the each

itemController

{{#each itemController='articles/item'}}

This will make sure that an item controller is used to render every article. Inside the #each, the
context is no longer an article instance but an article controller instance.

If we open the ember-inspector and click on view tree, we will notice that every item controller is
displayed independently of its parent controller, which is the Articles Index Controller.

Item Controller in the ember-inspector

Second, we use the Ember.Select⁶¹ view, which is basically a helper that allows us to render a HTML
select element and bind the value to a given property.

<td>{{view "select" content=states selection=model.state}}</td>

We pass content, which contains available options, and we specify which attribute will be bound
through the attribute selection.

If we were passing a collection of objects, then we would have to specify the properties optionVal-
uePath and optionLabelPath.

And third, we use the properties model.isSaving and model.isDirty, which belong to the model
wrapped in the item controller.

⁶¹http://emberjs.com/api/classes/Ember.Select.html

http://emberjs.com/api/classes/Ember.Select.html
http://emberjs.com/api/classes/Ember.Select.html

Hands-on 70

The previous properties are part of DS.Model⁶² and they help us to know things about our model.
In the previous scenario, model.isDirty becomes true if there is a change to the model and
model.isSaving is true if the model tries to persist any changes to the backend.

is-attributes
The following are the attributes of the type isSomething and can be found in DS.Model
documentation⁶³: * isDeleted * isDirty * isEmpty * isError * isLoaded * isLoading * isNew
* isReloading * isSaving * isValid

If we go to the browser and try what we just created, everything should work. Except that if we
click save, our object is not saved because we don’t have a handler for the save action.

We can add one in app/routes/articles/index.js:

Add save action to app/routes/articles/index.js

import Ember from 'ember';

export default Ember.Route.extend({

model: function() {

return this.modelFor('friends/show').get('articles');

},

actions: {

save: function(model) {

model.save();

return false;

}

}

});

Remember that actions always bubble to the parents. If we had a save action in the item
controller, it would have been called first and then bubbled up if we returned true.

Implementing auto save.

Instead of clicking the save button every time we change the state of the model, we want it to save
automatically.

First we’ll rewrite our template so the button part is not included.

⁶²http://emberjs.com/api/data/classes/DS.Model.html
⁶³http://emberjs.com/api/data/classes/DS.Model.html#property_isDeleted

http://emberjs.com/api/data/classes/DS.Model.html
http://emberjs.com/api/data/classes/DS.Model.html#property_isDeleted
http://emberjs.com/api/data/classes/DS.Model.html#property_isDeleted
http://emberjs.com/api/data/classes/DS.Model.html
http://emberjs.com/api/data/classes/DS.Model.html#property_isDeleted

Hands-on 71

app/templates/articles/index.hbs

{{#each itemController='articles/item'}}

<tr>

<td>{{model.description}}</td>

<td>{{model.notes}}</td>

<td>{{model.createdAt}}</td>

<td>{{view "select" content=states selection=model.state}}</td>

<td>

{{#if model.isSaving}}

<p>Saving ...</p>

{{/if}}

</td>

</tr>

{{/each}}

On the articles item controller, we need to set up an observer on the isDirty property and call an
autoSave function that will fire the action save:

app/controllers/articles/item.js

import Ember from 'ember';

export default Ember.Controller.extend({

states: ['borrowed', 'returned'],

autoSave: function() {

if (!this.get('model.isNew')) {

this.send('save', this.get('model'));

}

},

isDirtyChanged: function() {

if (this.get('model.isDirty') && !this.get('model.isSaving')) {

Ember.run.once(this, this.autoSave);

}

}.on('init').observes('model.isDirty')

});

The function autoSave is in charge of firing up an action programmatically using this.send. We
want to make sure the record is not in state isNew:

Hands-on 72

app/controllers/articles/item.js

autoSave: function() {

if (!this.get('model.isNew')) {

this.send('save', this.get('model'));

}

}

Then we set up an observer on themodel.isDirty property. By default, observers are not set up until
the function where they are specified is consumed. We pass on(‘init’), which will call the function
as soon as the controller is initialized. This helps us activate the observer.

app/controllers/articles/item.js

isDirtyChanged: function() {

if (this.get('model.isDirty') && !this.get('model.isSaving')) {

Ember.run.once(this, this.autoSave);

}

}.on('init').observes('model.isDirty')

We check whether the model has pending changes and make sure that it is not currently saving
anything. If both conditions are true, we set up a call to autoSave using Ember.run.once(this,
this.autoSave).

The question now is: what is Ember.run.once? We need to emphasize that observers are syn-
chronous. They are called as soon as their observed property changes, so we can have scenarios
where the same function is called twice. Let’s check the following scenario where we observe a and
b calling an expensive operation when either property changes.

Observer example

abChange: function() {

this.expensiveOperation();

}.observes('a', 'b')

Now, if we do something like the following, then an expensive operation will be called twice:

this.set('a', 2);

this.set('b', 3);

Hands-on 73

To avoid this situation we use Ember.run.once⁶⁴, which guarantees that the function passed will
be called only once during the current running loop. If we set a and b consecutively, the observer
functions is still called twice but the expensive operations just once.

Observers require more than what we just covered; they and the run loop will be discussed
at greater length in a later chapter.

Route hooks

If we go to http://localhost:4200/friends/new⁶⁵ and click cancel without entering anything, or we
write something and then click cancel, we’ll still see the unsaved record in our Friends Index. It
only goes away if we refresh the app.

Unsaved friends

The same happens with an article. If we try to create one but we click cancel, it will appear in the
index anyway.

Unsaved articles

It is important to remember that the Ember-Data Store not only keeps all the data we load from
the server, but it also keeps the one we create on the client. We were actually pushing a new record
to the store when we did the following on the Friends New Route:

⁶⁴http://emberjs.com/api/classes/Ember.run.html#method_once
⁶⁵http://localhost:4200/friends/new

http://emberjs.com/api/classes/Ember.run.html#method_once
http://localhost:4200/friends/new
http://emberjs.com/api/classes/Ember.run.html#method_once
http://localhost:4200/friends/new

Hands-on 74

model: function() {

return this.store.createRecord('friend');

},

Such records will live in the store with the state new. We can call save on it, which will persist it to
the backend and make it move to a different state, or we can remove it and our backend will never
know about it.

We might ask ourselves: but aren’t we doing a store.find on the Friends Index Route, which loads
our data again from the server? And shouldn’t that remove the unsaved records?

That’s partially true. It is correct that when we do this.store.find(‘friend’), a GET request is made
to the server. When we load our existing records again, instead of throwing out all the records in
the store, Ember-Datamerges the results, updating existing records and leaving untouched the ones
that the server doesn’t know about. That’s why we see the new but unsaved record in the index.

Ember Data Gotchas
We should use this.store.find for everything related to loading data, but there are some
gotchas to keep in mind. We’ll cover them in a later chapter devoted to Ember-Data.

To mitigate this situation, if we are leaving the Friends New Route and the model was not saved,
we’ll need to remove the record we created from the store. How do we do that?

Ember.Route⁶⁶ has a set of hooks that are called at different times during the route lifetime. For
instance, we can use activate⁶⁷ to do something when we enter a route, deactivate⁶⁸ when we leave
it or resetController⁶⁹ to reset values on some actions.

Let’s try them in app/routes/friends/new.js:

Using Route Hooks in app/routes/friends/new.js

import Ember from 'ember';

export default Ember.Route.extend({

model: function() {

return this.store.createRecord('friend');

},

activate: function() {

console.log('----- activate hook called -----');

},

⁶⁶http://emberjs.com/api/classes/Ember.Route.html
⁶⁷http://emberjs.com/api/classes/Ember.Route.html#method_activate
⁶⁸http://emberjs.com/api/classes/Ember.Route.html#method_deactivate
⁶⁹http://emberjs.com/api/classes/Ember.Route.html#method_resetController

http://emberjs.com/api/classes/Ember.Route.html
http://emberjs.com/api/classes/Ember.Route.html#method_activate
http://emberjs.com/api/classes/Ember.Route.html#method_deactivate
http://emberjs.com/api/classes/Ember.Route.html#method_resetController
http://emberjs.com/api/classes/Ember.Route.html
http://emberjs.com/api/classes/Ember.Route.html#method_activate
http://emberjs.com/api/classes/Ember.Route.html#method_deactivate
http://emberjs.com/api/classes/Ember.Route.html#method_resetController

Hands-on 75

deactivate: function() {

console.log('----- deactivate hook called -----');

},

// actions omitted for clarity

});

And then visit http://localhost:4200/friends/new⁷⁰ and click cancel or friends.

We should see something like the following in our browser’s console:

Activate and Deactivate hooks

Coming back to our original problem of the unsaved record in the store, we can use the deactivate
hook to clean up our code.

Let’s rewrite app/routes/friends/new.js so the deactivate hook does what we expect:

Cleaning up the store on deactivate in app/routes/friends/new.js

import Ember from 'ember';

export default Ember.Route.extend({

model: function() {

return this.store.createRecord('friend');

},

deactivate: function() {

// We grab the model loaded in this route

//

var model = this.modelFor('friends/new');

// If we are leaving the Route we verify if the model is in

// 'isNew' state, which means it wasn't saved to the backend.

//

if (model.get('isNew')) {

// We call DS#destroyRecord() which removes it from the store

//

model.destroyRecord();

}

}

});

⁷⁰http://localhost:4200/friends/new

http://localhost:4200/friends/new
http://localhost:4200/friends/new

Hands-on 76

Another scenario where it is common to use the deactivate hook involves the Edit Routes. For
example, if we try to edit a friend and don’t save the changes but click cancel, the friend profile will
still show whatever change we leave unsaved. To solve this problem we’ll use the deactivate hook,
but instead of checking if the model isNew, we’ll see if it isDirty and then call model.rollback().
This will return the attributes to their initial state.

Using deactivate hook app/routes/friends/edit.js

import Ember from 'ember';

export default Ember.Route.extend({

deactivate: function() {

var model = this.modelFor('friends/edit');

if (model.get('isDirty')) {

model.rollback();

}

}

});

Tasks
We have the same problem on the Articles Index Route. Implement the deactivate hook
so that any unsaved articles are not shown in the index.

Working with JavaScript plugins
In this chapter we’ll learn how to write Ember helpers that can be consumed in our templates. To do
so, we’ll write a helper called formatted-date that will show the date when an article was borrowed.
Instead of showing Sun Sep 28 2014 04:58:30 GMT-0500, we’ll see September 28, 2014.

We’ll implement formatted-date using Momentjs⁷¹, a library that facilitates working with dates in
JavaScript.

Installing moment

Remember that ember-cli uses Bower to manage frontend dependencies. Here we’ll use the same
pattern used to install picnicss: we’ll add moment to Bower and then use app.import in our
Brocfile.js.

We can also install front-end dependencies via npm if they are packed as addons. We’ll
learn more about this in a later chapter.

First, we install moment:

$ bower install moment --save

The option --save adds the dependency to our bower.json. We should find something similar to
“moment”: “∼2.8.3” (the version might be different).

Next, let’s import moment. To find out which file to import, let’s go to bower_components/mo-
ment/. We’ll see that it contains amoment.js file that is the non-minified version of the library. We
can also point to any of the versions under the directory min/. For now, let’s use the non-minified.

Moment site also includes information when consuming via bower⁷²

Let’s add the following to our Brocfile.js:

⁷¹http://momentjs.com
⁷²http://momentjs.com/docs/#/use-it/bower/.

http://momentjs.com
http://momentjs.com/docs/#/use-it/bower/.
http://momentjs.com
http://momentjs.com/docs/#/use-it/bower/.

Working with JavaScript plugins 78

app.import('bower_components/moment/moment.js');

Next, if we navigate to http://localhost:4200⁷³, open the console, and type “moment” we should have
access to the moment object.

We have successfully included our first JavaScript plugin, but we need to be aware of some gotchas.

It’s a global!

At the beginning of the book, we mentioned that one of the things ember-cli gives you is support to
work with ES6 Modules rather than globals. It feels like taking a step backward if we add a library
and then use it through its global, right?

The sad news is that not all libraries are written in such a way that they can be consumed easily via
a modules loader. Even so, if there is an AMD definition included in the library, not all of them are
compatible with the module loader used by ember-cli.

For example, moment includes an AMD version:

moment AMD definition

// ...

} else if (typeof define === 'function' && define.amd) {

define('moment', function (require, exports, module) {

if (module.config && module.config() && module.config().noGlobal === tru\

e) {

// release the global variable

globalScope.moment = oldGlobalMoment;

}

return moment;

});

Unfortunately, the module loader ember-cli is using doesn’t support that yet.

Other libraries do the following:

⁷³http://localhost:4200

http://localhost:4200
http://localhost:4200

Working with JavaScript plugins 79

Anonymous module

define([], function() {

return lib;

});

This is known as an anonymous module. Although its syntax is valid, the loader doesn’t support
this either because it expects named modules.

In the near future people will be able to use moment or other JavaScript libraries via
import, but the integration is not yet ready yet. See issue #2177⁷⁴ for more info.

This issue is not entirely the fault of ember-cli, but in fact results from everyone building their
libraries in different formats, making it difficult for consumers to use.

What can we do about it?

Wrapping globals

Instead of consuming globals directly, let’s wrap them in a helper module that will allow us to foster
the use of modules and to easily update or replace moment once we have a way to load it via the
module loader.

First, let’s create a utils file called date-helpers:

$ ember g util date-helpers

installing

create app/utils/date-helpers.js

installing

create tests/unit/utils/date-helpers-test.js

Replace app/utils/date-helpers.js with the following:

⁷⁴https://github.com/stefanpenner/ember-cli/issues/2177

https://github.com/stefanpenner/ember-cli/issues/2177
https://github.com/stefanpenner/ember-cli/issues/2177

Working with JavaScript plugins 80

Wrapping globals: app/utils/date-helpers.js

function formatDate(date, format) {

return window.moment(date).format(format);

}

export {

formatDate

};

Here we are wrapping the call to moment#format in the function formatDate, which we can
consume doing import { formatDate } from ‘utils/date-helpers’;. With this, we are back to our
idea of using modules. We’ll also have the facility to easily update moment when our loader is
ready to load it.

If we decide to stop using moment and replace it with any other similar library, we won’t need to
change our consuming code since it doesn’t care how format-date is implemented.

Writing an Ember helper: formatted-date.

Helpers are pieces of code that help us augment our templates. In this case, we want to write a helper
to create a date as a formatted string.

ember-cli includes a generator for helpers. Let’s create formatted-date with the command ember
g helper formatted-date, and then modify app/helpers/formatted-date so it consumes our format
function.

Formatted Date helper

import Ember from 'ember';

// We are consuming the function defined in our utils/date-helpers.

import { formatDate } from '../utils/date-helpers';

export default Ember.Handlebars.makeBoundHelper(function(date, format) {

return formatDate(date, format);

});

Once we have our helper defined, we can use it in app/templates/articles/index.hbs:

Working with JavaScript plugins 81

Using formatted-date in app/templates/articles/index.hbs

<table class="primary">

<thead>

<tr>

<th>Description</th>

<th>Notes</th>

<th>Borrowed since</th>

<th></th>

<th></th>

</tr>

</thead>

<tbody>

{{#each itemController='articles/item'}}

<tr>

<td>{{model.description}}</td>

<td>{{model.notes}}</td>

<td>{{formatted-date model.createdAt 'LL'}}</td>

<td>{{view "select" content=states selection=model.state}}</td>

<td>

{{#if model.isSaving}}

<p>Saving ...</p>

{{/if}}

</td>

</tr>

{{/each}}

</tbody>

</table>

Now, when we visit any of our friends’ profiles, we should see the dates in a more attractive format.

Articles using formatted-date

Working with libraries with named AMD distributions.

Before the addons system existed, the easiest way to distribute JavaScript libraries to be consumed in
ember-cli was to have a build with a named AMD version, importing the library using app.import,
and whitelisting the library’s exports.

Working with JavaScript plugins 82

Let’s study ic-ajax⁷⁵, an “Ember-friendly jQuery.ajax wrapper.” If we navigate to the lib/main.js⁷⁶,
we’ll notice that the source of the application is written with ES6 syntax, but it is distributed⁷⁷ in
different formats. This allows us to consume it in either global or module formats.

As mentioned previously, loader.js doesn’t work with anonymous AMD distributions. If we want
to include ic-ajax, we need to use the named AMD output. Let’s try ic-ajax in our project for a first
sketch of the dashboard.

First we need to remove ember-cli-ic-ajax from our package.json by running the following
command:

Uninstalling a npm package

npm uninstall ember-cli-ic-ajax --save-dev

The library we just removed wraps all the steps we are about to perform, but we won’t be using it.
We are interested in learning how things work under the hood and what we gain when we use the
addon.

Next we need to add the library to Bower. We can do so with bower install ic-ajax --save. Once
it’s installed, let’s import it into our Brocfile.js as follows:

Importing ic-ajax

app.import('bower_components/ic-ajax/dist/named-amd/main.js');

ic-ajax’s default export is the request function, which allows us to make petitions and manage them
as if they were promises. Let’s use this to create a “dashboard” object.

We’ll present dashboard as the home page of our application, so when we navigate to the root url
we’ll see the reports. We already have the template, but let’s create the route to load the required
data. Create app/routes/index.js with the following content:

⁷⁵https://github.com/instructure/ic-ajax/tree/v2.0.1/lib
⁷⁶https://github.com/instructure/ic-ajax/blob/master/lib/main.js
⁷⁷https://github.com/instructure/ic-ajax/tree/v2.0.1/dist

https://github.com/instructure/ic-ajax/tree/v2.0.1/lib
https://github.com/instructure/ic-ajax/blob/master/lib/main.js
https://github.com/instructure/ic-ajax/tree/v2.0.1/dist
https://github.com/instructure/ic-ajax/tree/v2.0.1/lib
https://github.com/instructure/ic-ajax/blob/master/lib/main.js
https://github.com/instructure/ic-ajax/tree/v2.0.1/dist

Working with JavaScript plugins 83

app/routes/index.js

import Ember from 'ember';

import request from 'ic-ajax';

export default Ember.Route.extend({

model: function() {

return request('/api/friends').then(function(data){

return {

friendsCount: data.friends.length

};

});

}

});

And then replace app/templates/index.hbs so it uses friendsCount:

<h1>Dashboard</h1>

<hr/>

<h2>Total Friends: {{model.friendsCount}}</h2>

The previous code is correct, but we’ll see the following error when running ember server:

Error when importing ic-ajax

$ ember server --proxy http://api.ember-cli-101.com

version: 0.1.5

Proxying to http://api.ember-cli-101.com

Livereload server on port 35729

Serving on http://0.0.0.0:4200

ENOENT, no such file or directory '/borrowers/tmp/tree_merger-tmp_dest_dir-KIfHr\

FRc.tmp/ic-ajax.js'

Error: ENOENT, no such file or directory '/borrowers/tmp/tree_merger-tmp_dest_di\

r-KIfHrFRc.tmp/ic-ajax.js'

...

At the beginning of this chapter, we mentioned that part of the process of consuming named AMD
libraries is to use app.import andwhitelist the library’s exports. We didn’t explain what we meant
by the latter.

Working with JavaScript plugins 84

During the build process, all our files under app/ go through a transformation step where the ES6
modules are converted to AMD format. When something like import request from ‘ic-ajax’; is
found internally, the tool in charge of transpiling the code checks if that is something already
registered in the module system. If not, it tries to find the module and convert it to the proper
format. In the previous scenario, it will try to find a file called ic-ajax.js, but because it is a library
we are including externally, such a file doesn’t exist. This causes the build to fail.

Whitelisting in this context means telling the tool in charge of transforming our ES6 files to AMD
that whenever import request from ‘ic-ajax’ is found, it is to assume its inclusion and refrain from
resolving it.

To do so, we pass an option called exports to app.import that whitelists ic-ajax and its exports.

In the Brocfile.js, let’s replace the call to import with the following:

Importing ic-ajax with exports

app.import('bower_components/ic-ajax/dist/named-amd/main.js', {

exports: {

'ic-ajax': [

'default',

'defineFixture',

'lookupFixture',

'raw',

'request',

]

}

});

If we run ember server, we’ll see that everything works. We can see the friends count in our
dashboard by visiting http://localhost:4200/⁷⁸.

ember-cli-ic-ajax

We started this chapter by removing ember-cli-ic-ajax, an addon that wraps the call to import and
include exports for us. If we inspect the index file in the addon⁷⁹, we’ll notice that it has almost the
same things we added to our Brocfile.js.

Now that we understand how importing named AMD libraries works, we can remove the import
for ic-ajax from the Brocfile.js and use it via the addon. Let’s run the following commands and
then stop and start the server. Everything should work:

⁷⁸http://localhost:4200/
⁷⁹https://github.com/rwjblue/ember-cli-ic-ajax/blob/master/index.js#L18

http://localhost:4200/
https://github.com/rwjblue/ember-cli-ic-ajax/blob/master/index.js#L18
http://localhost:4200/
https://github.com/rwjblue/ember-cli-ic-ajax/blob/master/index.js#L18

Working with JavaScript plugins 85

$ bower uninstall ic-ajax --save

$ npm i ember-cli-ic-ajax --save-dev

npm i is an alias fro npm install

A temporary replacement for moment.js

Let’s consume a simple named AMD library that takes a date and returns its value after calling
.toDateString(). This will be a simple example just to practice another module for importing named
AMD.

The name of the library is borrowers-dates and it is located in https://github.com/abuiles/borrowers-
dates⁸⁰.

The following is the content of the library:

borrowers-dates library

define("borrowers-dates", ["exports"], function(__exports__) {

"use strict";

function format(date) {

return date.toDateString();

}

__exports__.format = format;

});

The library exports a function called format. Let’s consume it via bower:

bower install borrowers-dates --save

And then import it through our Brocfile.js:

⁸⁰https://github.com/abuiles/borrowers-dates

https://github.com/abuiles/borrowers-dates
https://github.com/abuiles/borrowers-dates
https://github.com/abuiles/borrowers-dates

Working with JavaScript plugins 86

Consuming borrowers-dates

app.import('bower_components/borrowers-dates/index.js', {

exports: {

'borrowers-dates': [

'format'

]

}

});

With the library included, let’s consume it in app/utils/date-helpers.js instead of moment:

Using borrowers-dates in app/utils/date-helpers.js

import { format } from 'borrowers-dates';

function formatDate(date) {

return format(date);

}

export {

formatDate

};

Now when we visit the profile for any our friends with articles, we’ll see the dates rendered
differently. This is because we are no longer using moment.

Tasks
Remove borrowers-dates and go back to using moment.

ember-browserify

Browserify⁸¹ is a Node library which allows us to consume other Node libraries in the Browser
using CommonJS (which is Node’s module system), what this means is that we can install libraries
like MomentJS using npm and then consume them in the browser via browserify. But wait, to use
Browserify we actually need to install the library and create a “bundle” with our dependencies,

⁸¹http://browserify.org/

http://browserify.org/
http://browserify.org/

Working with JavaScript plugins 87

normally we’ll run something like browserify main.js -o bundle.js and then use bundle.js via
a script tag <script src="bundle.js"></script>.

As we can imagine this can get tricky and hard to manage in our ember-cli application, but thanks
to Edward Faulkner⁸² there is addon which allow us to consume libraries from npm with browserify
without needing us to worry about the bundling process, it is called ember-browserify⁸³.

Using ember-browserify

First we need to install the addon, which we can do running ember install:

$ ember install:addon ember-browserify

Once the addon has been installed, we are going to use it to consume MomentJS from npm in our
date-helpers file.

Before doing that, let’s make sure we have removed moment from our bower.json and also that we
have removed app.import('bower_components/moment/moment.js'); from the Brocfile.

Next, let’s install moment via npm, which we can do with npm install moment --save-dev.

Once it has been installed we can consume it from npm thanks to ember-browserify just doing
import moment from 'npm:moment';.

Let’s use it in our date-helpers so formatDate uses moment.

app/utils/date-helpers.js

import moment from 'npm:moment';

function formatDate(date, format) {

return moment(date).format(format);

}

export {

formatDate

};

And that’s it, we are now consuming MomentJS via browserify just as if it was other module in our
application.

⁸²https://github.com/ef4
⁸³https://github.com/ef4/ember-browserify

https://github.com/ef4
https://github.com/ef4/ember-browserify
https://github.com/ef4
https://github.com/ef4/ember-browserify

Working with JavaScript plugins 88

Wrapping up

In this chapter we have covered how to work with JavaScript plugins both as globals, consuming
named AMD plugins and via ember-browserify.

We didn’t cover how to write reusable plugins to be consumed with ember-cli. This is what addons
are used for, and we’ll talk about them in the next chapter.

The API for consuming third-party plugins is not 100% finished in ember-cli, and this
chapter might change along with its development. The story is still a work in progress,
but the goal is to make it easier to work with any plugin regardless of the format in which
it was written.

Components and Addons
Web Components

Web Components are a new mechanism that allows us to extend the DOM with our own elements
rather than limit ourselves to traditional tags. We can define our own tags, wrapping up all the
display logic in a single bundle, and reuse it between different applications. We’ll use the component
as any other tag and the browser will understand how to render it based on its definition.

Let’s examine how a Share on Twitter button works. Currently, we need to include some JavaScript
and then create an anchor tag that will be transformed by the JavaScript snippet:

Twitter Share Button

<a class="twitter-share-button"

href="https://twitter.com/share">

Tweet

<script type="text/javascript">

window.twttr=(function(d,s,id){var t,js,fjs=d.getElementsByTagName(s)[0];if(d.ge\

tElementById(id)){return}js=d.createElement(s);js.id=id;js.src="https://platform\

.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);return window.twttr\

||(t={_e:[],ready:function(f){t._e.push(f)}})}(document,"script","twitter-wjs"))\

;

</script>

The previous code will be the same regardless of the application we are developing. Sounds like a
good candidate for a component since it’s a chunk of code that can be reused across applications. A
possible twitter-button component could look something like the following:

Twitter Share Button

<twitter-button>

Ember.js Rocks!

</twitter-button>

All the implementation details are hidden in its definition. As consumers, we are only interested in
the final product and we needn’t worry about how it is accomplished.

Components and Addons 90

Web Components are a great tool that we can use to write more expressive applications and to avoid
code repetition within projects. Unfortunately, it is not yet supported in all browsers.

To tackle this problem, Ember introduced the concept of Components. This is an API that allows
us to write components today by following the W3C specification as closely as possible. The day
components become widely available, we’ll be able to switch without hiccups.

The official name for Web Components in the W3C is (Custom Ele-
ments)[http://w3c.github.io/webcomponents/spec/custom/#about].

ember-cli addons

ember-cli has a built-in mechanism that allows us to augment ember-cli’s functionality and share
code easily between different applications. This mechanism is known as addons.

Using addons, we can easily write Ember Components and share them with others using npm. Let’s
create our first component, which will help us grab an image to use as placeholder in our friends’
profiles.

ember-cli-fill-murray

http://www.fillmurray.com is a service we can use to get random images of Bill Murray to use as
placeholders. Let’s write an addon so that we can do something like the following in any of our
templates:

Fill Murray Component

{{fill-murray width=300 height=300}}

First we need to create the addon. ember-cli has a command for this. Outside of our borrowers
directory, let’s run the following:

Components and Addons 91

Creating an ember-cli addon

$ ember addon ember-cli-fill-murray

version: 0.1.5

installing..

create .bowerrc

create .editorconfig

create .ember-cli

create tests/dummy/

...

The addon command creates a directory very similar to the one created by new, but the former is
done in a way that allows it to be distributed as an addon.

If we go to the directory ember-cli-fill-murray, it will look like the following:

Addon directory

.

|-- Brocfile.js

|-- README.md

|-- addon

|-- app

|-- bower.json

|-- bower_components

|-- config

|-- index.js

|-- node_modules

|-- package.json

|-- testem.json

|-- tests

+-- vendor

If we open package.json, we’ll see the following section:

"keywords": [

"ember-addon"

],

That’s how ember-cli detects the presence of an addon. When we include the library in an ember-
cli project, it will transverse the dependencies and identify as addons the items with the keyword
ember-addon. We’ll also use package.json to specify any dependency our library might have.

Components and Addons 92

Next we have index.js, which is the entry point for loading our addon. If we need to add any extra
configuration for our addon, we’ll specify it in this file. For now let’s work with the basic one, which
looks like this:

module.exports = {

name: 'ember-cli-fill-murray'

};

Next we have the directories app and addon. This is where the code for our addon will live.

Whatever we put into app will be merged into our the application namespace, meaning we’ll
consume it just as if it were inside our ember-cli project.

For example, if we had an app/model/friend-base.js file in our addon, we could consume it in any
of the models in our borrowers app thusly:

Consuming an addon’s app/model/friend-base.js

import FriendBase from './friend-base';

...

If we had put friend-base.js into the addon directory, instead of getting merged into the consuming
application namespace, it would be kept under the addon namespace with the previous example. If
our addon was called borrowers-base and we had addon/models/friend-base.js, then we would
have consumed it like this:

Consuming modules from addon’s namespace

import FriendBase from 'borrowers-base/models/friend-base';

...

Going back to our ember-cli-fill-murray addon, we have the directory in place and we want
to distribute a component called fill-murray. Inside the directory, we can also use ember-cli
generators. We’ll do that in order to create the component:

Components and Addons 93

Bill Murray Component

$ ember generate component fill-murray

version: 0.1.5

installing

create app/components/fill-murray.js

create app/templates/components/fill-murray.hbs

installing

create tests/unit/components/fill-murray-test.js

In app/components/fill-murray.js, we can specify the properties for our component:

app/components/fill-murray.js

import Ember from 'ember';

export default Ember.Component.extend({

height: 100, // Default height and width would 100

width: 100,

//

// The following computed property will give us the url for

// fill-murray. In this case it depends on the properties height and width.

//

src: Ember.computed('height', 'width', function() {

var base = 'http://www.fillmurray.com/';

return base + this.get('width') + '/' + this.get('height');

})

});

Nextwe need to specify the body of our component in app/templates/components/fill-murray.hbs:

When rendering the component, it inserts an img tag that reads the source from the computed
property we specified.

Our addon is now ready. The next step is to distribute it via npm. First let’s change the name in
package.json because ember-cli-fill-murray is already taken. We’ll use ember-cli-fill-murray-
your-github-nickname and set version to 0.1.0. It will look something like this:

Components and Addons 94

"name": "ember-cli-fill-murray-your-github-nickname",

"version": "0.1.0",

With the previous values in place, let’s do npm publish. Our addon is now ready to be consumed.

Consuming fill-murray in borrowers

Once our package is in npm, we can add it to our application by running the following command:

$ npm install --save ember-cli-fill-murray-your-github-nickname

Once it is installed, we can consume the component in any of our templates as follows:

{{fill-murray width=150 height=150}}

Let’s use it in our friend template. First we want to add some styling for our friend template in
app/styles/app.css:

.friend-profile{

text-align: left;

}

.friend-profile img {

float:left;

margin:1em 2em 1em 1em;

}

.friend-profile .checkbox {

clear:both;

display:block;

margin:1em;

}

.friend-profile-links li {

display: inline;

list-style-type: none;

padding-right: 20px;

}

Then modify app/templates/friends/show.hbs to look like the following:

Components and Addons 95

Consuming fill-murray in app/templates/friends/show.hbs

<div class="friend-profile" class="row">

<div class="friend-info full">

{{fill-murray width=300 height=300}}

<div>

<p>{{model.fullName}}</p>

<p>{{model.email}}</p>

<p>{{model.twitter}}</p>

<ul class="friend-profile-links">

{{link-to 'Edit info' 'friends.edit' model}}

{{link-to 'Lend article' 'articles.new'}}

Delete

</div>

</div>

</div>

<div class="articles-container">

{{outlet}}

</div>

After editing the template, the Bill Murray placeholder will appear when we visit a friend’s profile.

Ember Data
In this chapter we’ll cover some of the public methods from the DS.Store⁸⁴ and learn how to load
relationships asynchronously.

DS.Store Public API

The store is the main interface we’ll use to interact with our records as well as the backend. When
we create, load, or delete a record, it is managed and saved in the store. The store then takes care of
replicating any change to the backend.

We won’t cover all of the functions, but we’ll go over the more common ones and their gotchas.

all

store.all is similar to store.find, but instead of making a request to the backend it returns all the
records already loaded in the store. The result of this method is a live array, which means it will
update its content if more records are loaded into the store for the given type.

Let’s study this with the inspector by navigating to http://localhost:4200 and clicking refresh. Next
we’ll grab an instance of the application route and run the following commands in the console:

friends = $E.store.all('friend')

friends.get('length')

> 0

friends.mapBy('firstName')

> []

We stored the result in a variable called friends, and we’ll notice that the length of the collection is
zero. This makes sense because we haven’t loaded any friends yet. Click on the friends link and run
the following:

friends.get('length')

> 3

friends.mapBy('firstName')

> ["zombo Wamba", "Pizza", "Loading-this"]

We’ll see that the result is no longer zero. When we navigated to the friends route, a request to the
backend was made and some records were loaded into the store. As we mentioned, the result from
all is a live array. That’s why our friends variable was updated without requiring any additional
steps.

⁸⁴http://emberjs.com/api/data/classes/DS.Store.html

http://emberjs.com/api/data/classes/DS.Store.html
http://emberjs.com/api/data/classes/DS.Store.html

Ember Data 97

filter

The filter function behaves similarly to find however, in addition to the type, it also takes a
parameter known as the filter function. The filter function is called once for every record in the
result and returns those for which the filter function returns true.

By default, filter will work against elements already loaded into the store (like all). If we want to
force a request to the backend, we can pass an object and it will make a request with every property
on the object as a parameter.

Again, let’s see this working on our application by navigating to http://localhost:4200/friends and
putting the following in the console:

friends = $E.store.filter('friend', function(friend){

return friend.get('totalArticles') % 2 == 0

})

friends.mapBy('firstName')

The previous call to filter will take every friend already loaded in the store and then select the ones
who have borrowed an even number of articles.

Let’s suppose our API supports a parameter hasArticles, which return only the friends who
currently have an article. Let’s say we want to filter them by the ones who have an even number of
articles.

We could write the filter as follows:

friends = $E.store.filter('friend', {hasArticles: true}, function(friend){

return friend.get('totalArticles') % 2 == 0

})

> GET "http://localhost:4200/api/v2/friends?hasArticles=true".

If we inspect our network tab, we’ll see the following GET request to the server:

http://localhost:4200/api/v2/friends?hasArticles=true

Once the records are loaded, it will apply the filter and return the values returning true for the given
filter function.

The result from a filter function is a live array as well. In our example, if any of our friends borrow
a new article and the total number of articles is odd, then it will disappear from our result.

XHR logging in the console is a great way to debug our applications. We can enable it
using the setting in Chrome’s DevTools. See slide #4 in the presentation [Wait, DevTools
could do THAT? by Ilya Grigorik](https://www.igvita.com/slides/2012/devtools-tips-and-
tricks/#4](https://www.igvita.com/slides/2012/devtools-tips-and-tricks/#4).

Ember Data 98

find

We have already used find to load records. find behaves differently based on the arguments we pass
and the data available in the store. There are two scenarios. One for loading a collection of records
and the other for a single record.

Scenario #1: Loading a collection

If we call find only with a model name, then it will make a request to load a list of records of that
type. The following is an example:

friends = $E.store.find('friend')

XHR finished loading: GET "http://localhost:4200/api/v2/friends".

If wewant to send query parameters with our request, thenwe can pass an object as second argument
and every key on the object will be included as parameter:

friends = $E.store.find('friend', {hasArticles: true, sort_by: 'created_at'})

XHR finished loading: GET "http://localhost:4200/api/v2/friends?hasArticles=true\

&sort_by=created_at".

In the previous request we asked find to load all the articles, sending as parameters the keys
hasArticles and sort_by.

Like all and filter, the result from find is a live array. When called, it makes a request to the server
and the collection is updated when more records are added to or removed from the store.

Scenario #2: Loading a single record

We can also use find to load a specific record. To do that, we’ll only need to pass the record id as
second argument:

$E.store.find('friend', 15)

XHR finished loading: GET "http://localhost:4200/api/v2/friends/15".

In the previous example, we loaded the friend with id 15. The store will only make a re-
quest to the server if the friend is not available in the store. To understand this, let’s go to
http://localhost:4200/friends and try the following in the console:

Ember Data 99

id = $E.store.all('friend').get('firstObject').id

$E.store.find('friend', id)

If we open our network tab, we’ll see that the store didn’t make any requests this time. This is
because we asked for a friend who was already loaded into the store.

It’s important to mention that find, all, and filter return promises. When testing on the browser’s
console, we don’t have to worry about it, but if we want to use the result in our application then we
need to keep this in mind.

getById

We can use store.getById(‘friend’, 15) to fetch a user directly from the store. Unlike find, the
behavior of this function is synchronous. It will return the record if it is available, or null otherwise.

metadataFor

If our API includes a “meta” keywith a response, we can access suchmetadata with themetadataFor
function. This is useful when we implement things like pagination.

Suppose the response from our API is something like the following when we fetch all of our friends:

{

friends: [...],

meta: { total: 30}

}

We can then read the meta key doing this.store.metadataFor(‘friend’);

createRecord

We are already familiar with createRecord, which is used when we want to create a new record for
a given type. For example:

this.store.createRecord('friend', {attrs..});

We can also use createRecord via a relationship. Suppose we are in the context of a friend and we
know they have an articles property that represents all the articles belonging to another friend. If
we want to add a new article, we can do it using the following syntax:

Ember Data 100

friend.get('articles').createRecord({attrs...});

This won’t work if the relationship is async.

Loading relationships

We already covered how to specify relationships between models. If we are defining a relationship
of type “has many”, then we use the keyword hasMany. If we want a “belongs to”, we use
DS.belongsTo.

We switched to v2 of the API, which side-loads all the article records for our friend but didn’t stop
to understand how that worked.

There are twoways toworkwith relationships in Ember. The first is workingwith records pre-loaded
into the store, and the second is to load them on demand.

With the first strategy, we’ll specify the ids on the payload of the records that the model is related
to. Ember-Data looks for those records and fills up the association automatically. Under this model,
the records that are part of the association need to be loaded into the Store or side-loaded with the
parent.

If we inspect the payload for friends arriving in version 2 of the API, the results look something like
the following:

{

id: 48,

first_name: "zombo",

last_name: "Pombo",

email: "zombo@pombo.com",

twitter: "zombo",

total_articles: 2,

article_ids: [

40,

41

]

}

This includes the model’s attributes and a key called article_ids. This is what Ember-Data uses to
bind the models.

Ember-Data expects the articleswith ids 40 and 41 to be in the Store. If we do store.getById(‘article’,
40), it returns a value or else expects to have a key in the response called articles that includes the
articles with id 40 and 41.

If the records are not present, we’ll get the following error:

Ember Data 101

route: articles.index Assertion Failed: You looked up the 'articles'

relationship on a 'friend' with id 48 but some of the associated

records were not loaded. Either make sure they are all loaded together

with the parent record, or specify that the relationship is async

(`DS.hasMany({ async: true })`)

The payload when side-loading a relationship looks like the following:

{

friend: {

id: 48,

first_name: "Wamba",

last_name: "Pombo",

email: "zombo@pombo.com",

twitter: "zombo",

total_articles: 2,

article_ids: [

41

]

},

articles: [

{

id: 41,

created_at: "2014-10-17T16:04:51.884Z",

description: "Pombo Set",

state: "borrowed",

notes: null,

friend_id: 48

}

]

}

The response above brings the friend record with id 48 and includes all of their articles.

This strategy for loading records works well if we know that all the records the association depends
on are already in the store, or if there is a low number of records to side-load.

What if we want to load thousands of relationships in addition to implementing strategies like
pagination or search? Enter async relationships.

In the previous error thrown by ember-data, the following was included: specify that the relation-
ship is async (DS.hasMany({ async: true }).

Ember Data 102

Working with async relationships in Ember-Data

Ember-Data offers support for working with asynchronous relationships. All we have to do is mark
the attribute as async. Then we can include the ids or an URL from which to load the records.

First it loads the parent record. Then it will load the records in the relationship, but only when
we explicitly call the attribute. For example, if we call friend.get(‘articles’), Ember-Data will
check if the articles are already loaded. If they are not, it will make a GET request. If the
ids in the relationships are 40 and 41, then the GET request is going to be something like
/api/friends?ids=40,41.

Let’s try this on our applications. First we’ll update our application adapter to use v3 of the API.
Let’s change app/adapters/application.js:

Using borrowers API V3

import DS from 'ember-data';

export default DS.ActiveModelAdapter.extend({

namespace: 'api/v3'

});

If we check the response from http://api.ember-cli-101.com/api/v3/friends.json⁸⁵, we’ll notice that
this time the articles are not being side-loaded.

Next we need to update our friend model. We’ll add the object {async: true} as second argument to
the hasMany attribute for articles:

Specifying articles as async: app/models/friend.js

import DS from 'ember-data';

import Ember from 'ember';

export default DS.Model.extend({

articles: DS.hasMany('articles', {async: true}),

email: DS.attr('string'),

firstName: DS.attr('string'),

lastName: DS.attr('string'),

totalArticles: DS.attr('number'),

twitter: DS.attr('string'),

fullName: Ember.computed('firstName', 'lastName', function() {

return this.get('firstName') + ' ' + this.get('lastName');

})

});

⁸⁵http://api.ember-cli-101.com/api/v3/friends.json

http://api.ember-cli-101.com/api/v3/friends.json
http://api.ember-cli-101.com/api/v3/friends.json

Ember Data 103

We just switched our model from working with side-load relationships to async.

Let’s explore how async relations behave. If we navigate to http://localhost:4200/friends, click on
any of our friends, and open the console, we’ll see something like the following:

XHR finished loading: GET "http://localhost:4200/api/v3/articles/34".

XHR finished loading: GET "http://localhost:4200/api/v3/articles/35".

XHR finished loading: GET "http://localhost:4200/api/v3/articles/36".

XHR finished loading: GET "http://localhost:4200/api/v3/articles/16".

This time we didn’t get the error because our articles were not loaded. Instead, Ember-Data made a
GET request for each of our friends.

Will Ember-Data make 10,000 requests to our API if our friend has 10,000 items? No. We can
tell Ember-Data to coalesce all those calls into a single request by setting the adapter’s property
coalesceFindRequests to true. Let’s change app/adapters/application.js to the following:

Enable coalesceFindRequests

import DS from 'ember-data';

export default DS.ActiveModelAdapter.extend({

namespace: 'api/v3',

coalesceFindRequests: true

});

If we refresh the route, this time we’ll see the following GET request:

XHR finished loading: GET

"http://localhost:4200/api/v3/articles?ids%5B%5D=34&ids%5B%5D=35&ids%5B%5D=36&id\

s%5B%5D=16".

Now it makes a single request to the API by passing the query parameter ids with all the articles
that it needs to load.

In the following commit, we can check the backend implementation to load a list of articles
if the ids parameter is present: abuiles/borrowers-backend- Add version 3⁸⁶.

⁸⁶https://github.com/abuiles/borrowers-backend/commit/857cb40e654b8243b6e842a2bc78408cd50a9f4d#diff-
b4f73470ac000871615a9c310e2537fcR5

https://github.com/abuiles/borrowers-backend/commit/857cb40e654b8243b6e842a2bc78408cd50a9f4d#diff-b4f73470ac000871615a9c310e2537fcR5
https://github.com/abuiles/borrowers-backend/commit/857cb40e654b8243b6e842a2bc78408cd50a9f4d#diff-b4f73470ac000871615a9c310e2537fcR5
https://github.com/abuiles/borrowers-backend/commit/857cb40e654b8243b6e842a2bc78408cd50a9f4d#diff-b4f73470ac000871615a9c310e2537fcR5

Ember Data 104

Using links instead of ids.

There is another way to load relationships asynchronously in Ember-Datawithout specifying the ids.
We can return a property called links with an object including an URL for each of the relationships
to load asynchronously. Ember-Data will then make a request to the URL when we ask for the
relationship records.

We’ll move to version 4 of our API, which specifies the relationships using links.

To try this in our application, we’ll update application adapter to use v4 of the API. Let’s change
app/adapters/application.js:

Using borrowers API V4

import DS from 'ember-data';

export default DS.ActiveModelAdapter.extend({

namespace: 'api/v4',

coalesceFindRequests: true

});

If we look at the payload for v4 http://api.ember-cli-101.com/api/v4/friends.json, we’ll noticed that
it looks like the following:

JSON payload with links

{

id: 48,

first_name: "Zombo",

last_name: "Pombo",

email: "zombo@pombo.com",

twitter: "zombo",

total_articles: 2,

links: {

articles: "/api/v4/articles?friend_id=48"

}

}

This time we don’t have ids but an URL from which Ember-Data can load the relationship. If we go
to a friend’s profile, we’ll see the requestGET “http://localhost:4200/api/v4/articles?friend_id=48”
in the network tab.

One important item to mention is that the request to load async data will only happen once. If
we visit a friend’s profile, go back to the friends index, and then visit that friend profile again, we

Ember Data 105

won’t see a request to fetch the articles because Ember-Data will identify such a request as already
fulfilled.

If we always want to load the records from the model hook on the Articles Index Route, then we
can put a guard, check if the request is fulfilled, and if that’s the case then force a reload. We can
use something like the following:

app/routes/articles/index.js

import Ember from 'ember';

export default Ember.Route.extend({

model: function() {

var articles = this.modelFor('friends/show').get('articles');

//

// The return value from an async relationship is a PromiseArray.

// The property isFulfilled will become true when the proxied

// promise has been fulfilled. In this case, that would be when we

// get a response from the API.

//

if (articles.get('isFulfilled')) {

articles.reload();

}

return articles;

},

actions: {

save: function(model) {

model.save();

return false;

}

}

});

If we try again, we’ll see that navigating to a friend’s profile will always cause a request to the API
to fetch the articles.

The property isFulfilled is part of a set of properties included in the PromiseArray via the
(Ember.PromiseProxyMixin⁸⁷.

Ember.PromiseProxyMixin has the following properties that we can use to guide the flow of our
application:

⁸⁷http://emberjs.com/api/classes/Ember.PromiseProxyMixin.html#property_isFulfilled

http://emberjs.com/api/classes/Ember.PromiseProxyMixin.html#property_isFulfilled
http://emberjs.com/api/classes/Ember.PromiseProxyMixin.html#property_isFulfilled

Ember Data 106

isFulfilled
isPending
isRejected
isSettled

What to use?

So many options. What should we use? It depends on our scenarios and how we want to load our
data. Side-loading works perfectly when we are not fetching many records, but it can make your
API really slow if you are returning a lot of relationships and a lot of records.

Async helps us alleviate the issue whenwe have a lot of records. This can help us keep our end-points
lighter, but it might add some overhead when getting all the ids in a relationship.

The faster option from an API point of view would be to use links. This won’t require the parent to
know anything about its children, but then we lose other benefits.

For example, when using ids, Ember-Data will only load records from the server that are not yet
available in the store. However, if some of the records are loaded, it won’t make that request. With
links, you lose that benefit because Ember-Data doesn’t have any information. It will make the
request and load data that you might already have available.

Again, it’s a matter of weighing risks and benefits and finding what works best for us. We need
to measure and experiment with different strategies before choosing the one that gives us the best
performance.

Computed Properties and Observers
We already covered computed properties, which we use in different parts of our applications. One
of these uses occurs on the friend model:

app/models/friend.js

import DS from 'ember-data';

import Ember from 'ember';

export default DS.Model.extend({

// ...

fullName: Ember.computed('firstName', 'lastName', function() {

return this.get('firstName') + ' ' + this.get('lastName');

})

});

With the code above, we created a new property on the model called fullName that depends on
firstName and lastName. The computed properties are called once at the beginning and the result
is cached until any of the dependent properties change.

Next we’ll talk about a couple of features and things to keep in mind when defining computed
properties.

An alternative syntax for computed properties

Ember extends the function prototype with the function property to allow us to specify computed
properties in a different way. Instead of using Ember.computed we can specify a computed property
like the following:

Computed Properties and Observers 108

CP in app/models/friend.js via .property function

import DS from 'ember-data';

import Ember from 'ember';

export default DS.Model.extend({

// ...

fullName: function() {

return this.get('firstName') + ' ' + this.get('lastName');

}.property('firstName', 'lastName');

});

We achieve the same result using the prototype extension or Ember.computed, but what you use is
a matter of taste. Some people like Ember.computed and others prefer .property.

We need to keep in mind, though, that we can use .property only when prototype extensions are
enabled by default. If we decide to turn them off, we won’t be able to use this functionality.

Ember guides have a section about disabling prototype extensions. If we are thinking about
turning them off, we should give it a read and understand the implications: Disabling
prototype extensions⁸⁸.

Computed Property function signature

The functions we’ve use to declare a computed property have looked like the following:

Computed Property Function

fullName: function() {

return this.get('firstName') + ' ' + this.get('lastName');

}.property('firstName', 'lastName');

Using the previous signature in the function we passed to Ember.computed or .property we get
computed properties working, but we can optionally specify it like so:

⁸⁸http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions

http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions
http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions
http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions

Computed Properties and Observers 109

Computed Property Function

fullName: function(key, value, oldValue) {

return this.get('firstName') + ' ' + this.get('lastName');

}.property('firstName', 'lastName');

Now we can add support for setting the value of a computed property and handling how it should
behave. The following is an excerpt from the Ember documentation where firstName and lastName
are used:

Computed Property with set support

fullName: function(key, value, oldValue) {

if (arguments.length === 1) {

//

// Works as getter

//

return this.get('firstName') + ' ' + this.get('lastName')

} else {

//

// Works as setter

//

var name = value.split(' ');

this.set('firstName', name[0]);

this.set('lastName', name[1]);

return value;

}

}.property('firstName', 'lastName')

For the curious, the following class has the implementation for computed property⁸⁹.

Why didn’t we mention that we can use a computed property as setter? This is a very uncommon
scenario that tends to cause a lot of confusion for people. Ideally, we use computed properties as

⁸⁹https://github.com/emberjs/ember.js/blob/v1.7.0/packages/ember-metal/lib/computed.js#L78

https://github.com/emberjs/ember.js/blob/v1.7.0/packages/ember-metal/lib/computed.js#L78
https://github.com/emberjs/ember.js/blob/v1.7.0/packages/ember-metal/lib/computed.js#L78

Computed Properties and Observers 110

Read-Only. In a later version of Ember, this might be the default. Stefan Penner⁹⁰ created an issue
that aims to make computed properties Read-Only by default: default readOnly CP #9290⁹¹.

Computed Properties gotchas

Computed properties and observers are normally fired whenever we call this.set() on the property
they depend on. The downside of this is that they will be recalculated even if the value is the same.

Fortunately for us, Gavin Joyce⁹² wrote an ember-cli-addon called ember-computed-change-gate⁹³
that offers an alternative function to define computed properties and that fixes observers such that
they are only called if the property they depend on has changed.

We can install the addon with npm i ember-computed-change-gate --save-dev and use it in our
friends model like so:

Using ember-computed-change-gate in app/models/friend.js

import DS from 'ember-data';

import Ember from 'ember';

import changeGate from 'ember-computed-change-gate/change-gate';

export default DS.Model.extend({

//

// Currently changeGate only support one property

//

capitalizedFirstName: changeGate('firstName', function(firstName) {

return Ember.String.capitalize(firstName);

})

});

Now our computed property capitalizedFirstName will be called only when the value of the
dependent key has changed to a different value.

Observers

Ember has a built-in implementation of the Observer pattern⁹⁴, which allows us to keep track of
changes in any property or computed property.

We use observers to implement auto saving in the articles item controller with the following:

⁹⁰https://twitter.com/stefanpenner
⁹¹https://github.com/emberjs/ember.js/issues/9290
⁹²https://twitter.com/gavinjoyce
⁹³https://github.com/GavinJoyce/ember-computed-change-gate
⁹⁴http://en.wikipedia.org/wiki/Observer_pattern

https://twitter.com/stefanpenner
https://github.com/emberjs/ember.js/issues/9290
https://twitter.com/gavinjoyce
https://github.com/GavinJoyce/ember-computed-change-gate
http://en.wikipedia.org/wiki/Observer_pattern
https://twitter.com/stefanpenner
https://github.com/emberjs/ember.js/issues/9290
https://twitter.com/gavinjoyce
https://github.com/GavinJoyce/ember-computed-change-gate
http://en.wikipedia.org/wiki/Observer_pattern

Computed Properties and Observers 111

controllers/articles/item.js

isDirtyChanged: function() {

if (this.get('model.isDirty') && !this.get('model.isSaving')) {

Ember.run.once(this, this.autoSave);

}

}.on('init').observes('model.isDirty')

We define an observer with the prototype extension .observes, which receives any number of
properties to observe. When any of the properties is set, the function is automatically called.

The pattern .on('init').observes('propertyName') is a common method to make sure the
observer is enabled. By default, observers are not switched on until the function where they are
defined is called. If we define the observer as follows:

controllers/articles/item.js

isDirtyChanged: function() {

if (this.get('model.isDirty') && !this.get('model.isSaving')) {

Ember.run.once(this, this.autoSave);

}

}.observes('model.isDirty')

Then the observer won’t have any effect until the function isDirtyChanged is called. To make
sure the observer is enabled we use on('init'), which calls the function as soon as the object
where the function is defined gets created. In our example, that would be when an instance of
controllers/articles/item.js is created.

We can also create an observer using addObserver from Ember.Observable⁹⁵. We could define the
isDirtyChanged observer like this:

controllers/articles/item.js

setObserver: function() {

this.addObserver('model.isDirty', this, this.isDirtyChanged);

// we need to call get on the property so the observers are setup

// see for more info http://cl.ly/1f0Y1v2A1G04

this.get('model').get('isDirty');

}.on('init'),

isDirtyChanged: function() {

⁹⁵http://emberjs.com/api/classes/Ember.Observable.html

http://emberjs.com/api/classes/Ember.Observable.html
http://emberjs.com/api/classes/Ember.Observable.html

Computed Properties and Observers 112

if (this.get('model.isDirty') && !this.get('model.isSaving')) {

Ember.run.once(this, this.autoSave);

}

}

Observing collections

Ember adds two convenient properties to collections.We can use them if wewant to observe changes
to any of the members’ properties, or if we want to do something every time an element is added or
removed.

The first property is .[]⁹⁶, which is just a special handler that changes every time the collection
content changes.

The second one is @each⁹⁷, which allows us to observe properties on each of the items in the
collection.

We can use the previous function in our articles index to call a function when we add a new article,
and then other one when we change the state of an article:

app/controller/articles/index.js

import Ember from 'ember';

export default Ember.Controller.extend({

contentDidChange: function() {

console.log('Called when we add or removed an article.');

}.observes('model.[]'),

stateDidChange: function() {

console.log('Called when the state property change for any of the articles.'\

);

}.observes('model.@each.state')

});

If we visit any of our friends’ profiles and change the state for any article or add a new one, we’ll
see the relevant messages in the browser’s console.

⁹⁶http://emberjs.com/api/classes/Ember.Array.html#property__
⁹⁷http://emberjs.com/api/classes/Ember.Array.html#property__each

http://emberjs.com/api/classes/Ember.Array.html#property__
http://emberjs.com/api/classes/Ember.Array.html#property__each
http://emberjs.com/api/classes/Ember.Array.html#property__
http://emberjs.com/api/classes/Ember.Array.html#property__each

Driving our application state through
the URL
In JSConf EU 2013, Tom Dale⁹⁸ gave a talk called Stop Breaking the Web⁹⁹.

Tom talks about the importance of the URL and how we should give it a higher priority in our
applications. Ideally, the URL should be able to reflect our application state in such a way that we
can easily reference it, bookmark it, or share it with others.

Some of us have probably experienced some frustration when visiting a website that has search
functionality but loses our selections between page reloads, or that doesn’t allow us to easily share
what we see with others.

Airline websites offer an example of this issue. The following image shows Delta’s website after
searching for flights to the next EmberConf.

⁹⁸https://twitter.com/tomdale
⁹⁹http://2013.jsconf.eu/speakers/tom-dale-stop-breaking-the-web.html

https://twitter.com/tomdale
http://2013.jsconf.eu/speakers/tom-dale-stop-breaking-the-web.html
https://twitter.com/tomdale
http://2013.jsconf.eu/speakers/tom-dale-stop-breaking-the-web.html

Driving our application state through the URL 114

Search on Delta

The URL after the search is http://www.delta.com/air-shopping/findFlights.action, which doesn’t
really tell us anything about the screen we are visiting. If we copy and paste the URL in other
browser, we’ll get a bunch of errors and not the search we originally performed.

Now let’s do a search on hipmunk¹⁰⁰. This website places greater value on the functionality of the
URL.

¹⁰⁰https://www.hipmunk.com

https://www.hipmunk.com
https://www.hipmunk.com

Driving our application state through the URL 115

hipmunk search

The search above results in the following: flights/MDE-to-PDX#!dates=Aug23,Aug31&pax=1¹⁰¹.
Isn’t that beautiful? Just by reading the URL, we know our destination and the dates of our trip.
Clicking the URL takes us to the original search we see in the image. Suppose we want someone to
buy the ticket for us; we can simply share the URL and be done with it.

Ember also appreciates the beauty of a functional URL. In fact, our applications are driven by URLs
that we specify in app/router.js. This doesn’t mean we are immune from building bad applications
that don’t respect the URL, but at least it gives us the tools to avoid these issues and invites us to
think better about our URLs.

Sorting friends.

When visiting the friends index, we want to be able to sort them by clicking on theName orArticles
column and then toggle ascending or descending between clicks.

Ember includes a mixin called SortableMixin¹⁰² that extends arrays to have sorting functionality. By

¹⁰¹https://www.hipmunk.com/flights/MDE-to-PDX#!dates=Aug23,Aug31&pax=1
¹⁰²http://emberjs.com/api/classes/Ember.SortableMixin.html

https://www.hipmunk.com/flights/MDE-to-PDX#!dates=Aug23,Aug31&pax=1
http://emberjs.com/api/classes/Ember.SortableMixin.html
https://www.hipmunk.com/flights/MDE-to-PDX#!dates=Aug23,Aug31&pax=1
http://emberjs.com/api/classes/Ember.SortableMixin.html

Driving our application state through the URL 116

default, Ember.ArrayController¹⁰³, which is the class of our Friends Index Controller, extends
this class so that it can easily sort its content.

To use the mixin, we only need to specify the property sortProperties. We have the additional
option to specify sortAscending.

Let’s try it. Create the Friends Index Controller:

app/controllers/friends/index.js

import Ember from 'ember';

export default Ember.ArrayController.extend({

sortAscending: true,

sortProperties: ['fullName']

});

If we visit http://localhost:4200/friends, we’ll see our friends sorted by fullName in ascending order.
If we change sortAscending to false and refresh, we’ll see them sorted in descending order.

Changing the sort field dynamically

To change our sort field dynamically, we will create an action setSortBy that will receive as
parameter the field we want to sort our properties by and make sortProperties a computed
property that depends on sortBy.

We’ll also toggle the property sortAscending every time we call the action setSortBy. For example,
if it’s true then it becomes false and vice versa.

app/controllers/friends/index.js

import Ember from 'ember';

export default Ember.ArrayController.extend({

sortAscending: true,

//

// We'll use sortBy to hold the name of the field we want to sort by.

//

sortBy: 'fullName',

// We are making sortProperties a computed property.

// If we change the value for sortBy then the property will be

¹⁰³http://emberjs.com/api/classes/Ember.ArrayController.html

http://emberjs.com/api/classes/Ember.ArrayController.html
http://emberjs.com/api/classes/Ember.ArrayController.html

Driving our application state through the URL 117

// recalculated.

sortProperties: Ember.computed('sortBy', function() {

return [this.get('sortBy')];

}),

actions: {

//

// The setSortBy function receives the name of the function and

// toggle `sortAscending`. The function `toggleProperty` comes from the

// [Observable Mixin](http://emberjs.com/api/classes/Ember.Observable.html)

// it switches a boolean property between false and true.

//

setSortBy: function(fieldName) {

this.set('sortBy', fieldName);

this.toggleProperty('sortAscending');

return false;

}

}

});

Now we need to call the setSortBy action in the app/templates/friends/index.hbs

app/templates/friends/index.hbs

<table class="primary">

<thead>

<tr>

<th {{action "setSortBy" "fullName"}}> Name</th>

<th {{action "setSortBy" "totalArticles"}}>Articles</th>

<th></th>

</tr>

</thead>

<tbody>

{{#each friend in model}}

<tr>

<td>{{link-to friend.fullName "articles" friend}}</td>

<td>{{friend.totalArticles}}</td>

<td>delete</td>

</tr>

{{/each}}

</tbody>

</table>

Driving our application state through the URL 118

If we go to http://localhost:4200/friends and click on Name or Articles, then the list of friends will
get sorted.

We got sorting to work! However, we just built one of those sites that doesn’t allow us to reproduce
our app state from the URL. Suppose we want someone to have a look at our friends list sorted by
the total number of articles they have. As of right now, this is impossible.

Ember has a useful feature called Query Parameters¹⁰⁴ that allows us to persist application state in
the URL as parameters, generating URLs like /friends?sortBy=name&sortAscending=true.

Query Parameters

To use query parameters we need to specify a property called queryParams in the controller
associated with this route, and then list every property that should persist as query parameter.

In our scenario we’ll modify the controller as follows:

app/controllers/friends/index.js

import Ember from 'ember';

export default Ember.ArrayController.extend({

queryParams: ['sortBy', 'sortAscending'],

sortAscending: true,

sortBy: 'fullName',

sortProperties: Ember.computed('sortBy', function() {

return [this.get('sortBy')];

}),

actions: {

// omitted

}

If we visit http://localhost:4200/friends the URL won’t have any query parameters, but as soon as we
click any of the headers the query parameters will change. The query parameters are only included
when the default value for the property changes. In our case, that would be when sortAscending

changes to something different from true and sortBy to something different from fullName.

Now we can refresh the browser or copy the URL into a new tab and we’ll see the same! We are
driving our application state through the URL.

We can also use query params with the link-to helper. If we want a link to the friends index
sorted by totalArticles, we can write it like this: {{#link-to 'friends' (query-params

sortBy="totalArticles")}}Friends{{/link-to}}

¹⁰⁴http://emberjs.com/guides/routing/query-params/

http://emberjs.com/guides/routing/query-params/
http://emberjs.com/guides/routing/query-params/

Driving our application state through the URL 119

Refreshing the model when query parameters changes

By default the model hook won’t be called if any of the query parameters change, but there are
scenarios where this can be the desired behavior. For example, when we are using pagination and
we don’t have all the users in the store, under that scenario we’ll ask the API for the users sorted by
a given field in ascending or descending order.

Supposing our API supports the parameters sortBy and sortAscending, we can have the route make
a full transition when any of the queryParams change. To do this, we’ll need to specify a property
in the route called queryParams where we explicitly mark the parameters that we want to cause a
full transition.

app/routes/friends/index.js

import Ember from 'ember';

export default Ember.Route.extend({

queryParams: {

sortBy: {

refreshModel: true

},

sortAscending: {

refreshModel: true

}

},

model: function(params) {

return this.store.find('friend', params);

}

});

Now every time we change sortBy or sortAscending, the model hook for app/routes/friends/in-
dex.js will be called, making a request to the API similar to the following:

/api/v4/friends?sortBy=fullName&sortAscending=true

Further Reading

Query parameters is one of the best documented features on Ember. We recommend the official
guide for more information: http://emberjs.com/guides/routing/query-params/¹⁰⁵.

¹⁰⁵http://emberjs.com/guides/routing/query-params/

http://emberjs.com/guides/routing/query-params/
http://emberjs.com/guides/routing/query-params/

Driving our application state through the URL 120

Tasks
Use query parameters on the articles index to show or hide articles depending on their state.
If the query parameter showReturned is true, then all the articles are displayed. Otherwise,
only the ones in the borrowed state are shown.

Tip: We can have a computed property called filteredResults on the controller that
updates if showReturned changes. See also: Ember.Enumerable#filterBy¹⁰⁶.

¹⁰⁶http://emberjs.com/api/classes/Ember.Enumerable.html#method_filterBy

http://emberjs.com/api/classes/Ember.Enumerable.html#method_filterBy
http://emberjs.com/api/classes/Ember.Enumerable.html#method_filterBy

Testing Ember.js applications
In this chapter we’ll cover the basics of unit and acceptance testing in Ember.js applications and
recommend a couple of resources that can help us expand our knowledge in this area.

Unit Testing

When we run the generators, they create unit test files by default. We can view all the generated
unit tests if we go to tests/unit:

Unit tests

$ ls tests/unit/

adapters controllers models utils

components helpers routes

Tests are automatically grouped by type. If we open the unit test for our friend model, we’ll see the
following:

tests/unit/models/friend-test.js

import { test, moduleForModel } from 'ember-qunit';

moduleForModel('friend', 'Friend', { needs: ['model:article'] });

test('it exists', function() { var model = this.subject(); ok(model);

});

At the beginning of the test we import a set of helpers from ember-qunit¹⁰⁷, which is a library that
wraps a bunch of functions to facilitate testing with QUnit.

moduleForModel received the name of the model we are testing, a description, and some options. In
our scenario, we specify that the tests need a model called article because of the existing relationship
between them.

Next, the test includes a basic assertion that the model exists. this.subject()would be an instance
of a friend.

¹⁰⁷https://github.com/rwjblue/ember-qunit

https://github.com/rwjblue/ember-qunit
https://github.com/rwjblue/ember-qunit

Testing Ember.js applications 122

We have two ways of running tests. The first one is via the browser while we run the development
server. We can navigate to http://localhost:4200/tests¹⁰⁸ and our tests will be run. The second method
is using a tests runner. At the moment ember-cli has built-in support for Testemwith PhantomJS¹⁰⁹,
which we can use to run our tests on a CI server. To run tests in this mode, we only need to do ember
test.

We can also run tests with the command npm test which is aliased to ember test in
package.json.

Let’s write two more tests for our friend model. We want to check that the computed property
fullName behaves as expected and that the relationship articles is properly set.

tests/unit/models/friend-test.js

import { test, moduleForModel } from 'ember-qunit';

import Ember from 'ember';

moduleForModel('friend', 'Friend', {

needs: ['model:article']

});

test('it exists', function() {

var model = this.subject();

ok(model);

});

test('fullName joins first and last name', function() {

var model = this.subject({firstName: 'Syd', lastName: 'Barrett'});

equal(model.get('fullName'), 'Syd Barrett');

Ember.run(function() {

model.set('firstName', 'Geddy');

});

equal(model.get('fullName'), 'Geddy Barrett', 'Updates fullName');

});

test('articles relationship', function() {

var klass = this.subject({}).constructor;

¹⁰⁸http://localhost:4200/tests
¹⁰⁹http://phantomjs.org/

http://localhost:4200/tests
http://phantomjs.org/
http://localhost:4200/tests
http://phantomjs.org/

Testing Ember.js applications 123

var relationship = Ember.get(klass, 'relationshipsByName').get('articles');

equal(relationship.key, 'articles');

equal(relationship.kind, 'hasMany');

});

We can run our tests by going directly to the followingURL: http://localhost:4200/tests?module=Friend¹¹⁰.

The first test verifies that fullName is calculated correctly.We have towrap model.set('firstName',
'Geddy'); in Ember.run because it has an asynchronous behavior. If we modify the implementation
for fullName such that it doesn’t return first and last names, the tests will fail.

The second test checks that we have set up the proper relationship to articles. Something similar
could go in the articles model tests. If we call constructor on an instance to a model, that will give
us access to the class of which it is an instance.

Let’s add other unit test for app/utils/date-helpers:

tests/unit/utils/date-helpers-test.js

import { formatDate } from 'borrowers/utils/date-helpers';

module('Utils: formatDate');

test('formats a date object', function() {

var date = new Date("11-3-2014");

var result = formatDate(date);

equal(result, 'Mon Nov 03 2014', 'returns a readable string');

});

We import the function we want to test and then check that it returns the date as a readable string.
We can run the test by going to http://localhost:4200/tests?module=Utils%3A%20formatDate¹¹¹.

Acceptance Tests

With acceptance tests we can verify workflows in our application. For example, making sure that
we can add a new friend, that if we visit the friend index a list is rendered, etc. An acceptance test
basically emulates a real user’s experience of our application.

¹¹⁰http://localhost:4200/tests?module=Friend
¹¹¹http://localhost:4200/tests?module=Utils%3A%20formatDate

http://localhost:4200/tests?module=Friend
http://localhost:4200/tests?module=Utils%3A%20formatDate
http://localhost:4200/tests?module=Friend
http://localhost:4200/tests?module=Utils%3A%20formatDate

Testing Ember.js applications 124

Ember has a set of helpers to simplify writing these kinds of tests. There are synchronous¹¹² and
asynchronous¹¹³ helpers. We use the former for tests that don’t have any kind of side-effect, such as
checking if an element is present on a page, and the latter for tests that fire some kind of side-effect.
For example, clicking a link or saving a model.

Let’s write an acceptance test to verify that we can add new friends to our application. We can
generate an acceptance test with the generator acceptance-test.

$ ember g acceptance-test friends/new

installing

create tests/acceptance/friends/new-test.js

If we visit the generated test, we’ll see the following:

tests/acceptance/friends/new-test.js

import Ember from 'ember';

import startApp from 'borrowers/helpers/start-app';

var App;

module('Acceptance: FriendsNew', {

setup: function() {

App = startApp();

},

teardown: function() {

Ember.run(App, 'destroy');

}

});

test('visiting /friends/new', function() {

visit('/friends/new');

andThen(function() {

equal(currentPath(), 'friends/new');

});

});

We need to replace import startApp from '../helpers/start-app';with import startApp from

'../../helpers/start-app'; and then make the assertion of currentPath look for friends.new
instead of friends/new.

¹¹²http://emberjs.com/guides/testing/test-helpers/#toc_wait-helpers
¹¹³http://emberjs.com/guides/testing/test-helpers/#toc_asynchronous-helpers

http://emberjs.com/guides/testing/test-helpers/#toc_wait-helpers
http://emberjs.com/guides/testing/test-helpers/#toc_asynchronous-helpers
http://emberjs.com/guides/testing/test-helpers/#toc_wait-helpers
http://emberjs.com/guides/testing/test-helpers/#toc_asynchronous-helpers

Testing Ember.js applications 125

Now we can run our tests by visiting http://localhost:4200/tests¹¹⁴ or, if we want to run only the ac-
ceptance tests for FriendsNew, http://localhost:4200/tests?module=Acceptance%3A%20FriendsNew¹¹⁵.

Let’s add two more tests but this time starting from the index URL. We want to validate that we can
navigate to new and then check that it redirects to the correct place after creating a new user.

Tests new friend: tests/acceptance/friends/new-test.js

test('Creating a new friend', function() {

visit('/');

click('a[href="/friends/new"]');

andThen(function() {

equal(currentPath(), 'friends.new');

});

fillIn('input[placeholder="First Name"]', 'Johnny');

fillIn('input[placeholder="Last Name"]', 'Cash');

fillIn('input[placeholder="email"]', 'j@cash.com');

fillIn('input[placeholder="twitter"]', 'jcash');

click('input[value="Save"]');

//

// Clicking save will fire an async event.

// We can use andThen, which will be called once the promises above

// have been resolved.

//

andThen(function() {

equal(

currentRouteName(),

'friends.show.index',

'Redirects to friends.show after create'

);

});

});

The second test we want to add checks that the application stays on the new page if we click save,
without adding any fields, and that an error message is displayed:

¹¹⁴http://localhost:4200/tests
¹¹⁵http://localhost:4200/tests?module=Acceptance%3A%20FriendsNew

http://localhost:4200/tests
http://localhost:4200/tests?module=Acceptance%3A%20FriendsNew
http://localhost:4200/tests
http://localhost:4200/tests?module=Acceptance%3A%20FriendsNew

Testing Ember.js applications 126

Tests new friend: tests/acceptance/friends/new-test.js

test('Clicking save without filling fields', function() {

visit('/friends/new');

click('input[value="Save"]');

andThen(function() {

equal(

currentRouteName(),

'friends.new',

'Stays on new page'

);

equal(

find("h2:contains(You have to fill all the fields)").length,

1,

"Displays error message"

);

});

});

Mocking the API response

On the previous tests we hit the API, but this is not a common scenario. Normally we’d like to mock
the interactions with the API. To do so we have different alternatives. One is to use Pretender¹¹⁶, a
library that allows us to mock requests with a simple DSL.

Another alternative is to use the built-in mock generator¹¹⁷ in ember-cli. This basically takes
advantage of the Express server used for development and extends it to capture requests to our
API end-points. With this tool, we can control what we would like to return for each request.

Let’s create a mock for api/articles:

$ ember g http-mock articles

installing

create server/.jshintrc

create server/index.js

create server/mocks/articles.js

install package connect-restreamer

If we open the generated file server/mocks/articles.js, we’ll see the following:

¹¹⁶https://github.com/trek/pretender
¹¹⁷http://www.ember-cli.com/#mocks-and-fixtures

https://github.com/trek/pretender
http://www.ember-cli.com/#mocks-and-fixtures
https://github.com/trek/pretender
http://www.ember-cli.com/#mocks-and-fixtures

Testing Ember.js applications 127

server/mocks/articles.js

module.exports = function(app) {

var express = require('express');

var articlesRouter = express.Router();

articlesRouter.get('/', function(req, res) {

res.send({"articles":[]});

});

app.use('/api/articles', articlesRouter);

};

This intercepts the call to any request starting with /api/articles. If it is a GET to /, it will return
{"articles":[]}.

Suppose we want to mock the request for a particular article. We can add the following:

server/mocks/articles.js

module.exports = function(app) {

var express = require('express');

var articlesRouter = express.Router();

articlesRouter.get('/', function(req, res) {

res.send({"articles":[]});

});

articlesRouter.get('/articles/74', function(req, res) {

res.send({

"article":{

"id":74,

"created_at":"2014-11-03T21:30:47.869Z",

"description":"foo",

"state":"borrowed",

"notes":"bar",

"friend_id":153

}

});

});

app.use('/api/articles', articlesRouter);

};

This will intercept any GET request to /articles/74 and return the mocked article.

Testing Ember.js applications 128

Further Reading

During EmberConf 2014, Eric Berry¹¹⁸ gave a great talk called The Unofficial, Official Ember
Testing Guide¹¹⁹ where he walked us through testing in Ember.js. Eric also contributed an ex-
cellent guide for testing that is now the official guide on the Ember.js website. We recom-
mend the official guide, which provides a complete overview from unit to acceptance testing:
http://emberjs.com/guides/testing/¹²⁰.

To know more about using mocks and fixtures, we recommend the following presentation: Real
World Fixtures¹²¹ by Chris Ball¹²².

¹¹⁸https://twitter.com/coderberry
¹¹⁹http://www.confreaks.com/videos/3310-emberconf2014-the-unofficial-official-ember-testing-guide
¹²⁰http://emberjs.com/guides/testing
¹²¹https://speakerdeck.com/cball/real-world-fixtures
¹²²https://twitter.com/cball_

https://twitter.com/coderberry
http://www.confreaks.com/videos/3310-emberconf2014-the-unofficial-official-ember-testing-guide
http://www.confreaks.com/videos/3310-emberconf2014-the-unofficial-official-ember-testing-guide
http://emberjs.com/guides/testing
https://speakerdeck.com/cball/real-world-fixtures
https://speakerdeck.com/cball/real-world-fixtures
https://twitter.com/cball_
https://twitter.com/coderberry
http://www.confreaks.com/videos/3310-emberconf2014-the-unofficial-official-ember-testing-guide
http://emberjs.com/guides/testing
https://speakerdeck.com/cball/real-world-fixtures
https://twitter.com/cball_

PODS
Until now we have organized our project files by type, so we have all the models under app/models,
controllers under app/controllers, and so on.

As we mentioned in the section on adapters, ember-cli allows us to group things that are logically
related under a single directory. Such a structure is known as “pods”.

The following shows us how the resolver tries to find the friend adapter:

Resolving the friend adapter

[] adapter:friendborrowers/friend/adapter

[] adapter:friendundefined

[] adapter:friendborrowers/adapters/friend

[] adapter:friendundefined

First it tries to find the module adapter under the namespace friend and then moves to the
namespace adapters.

We are currently able to structure our projects using pods or by grouping items by their time, but
the way forward is to start using pods. Ember 2.0 introduces the concept of Routeable Components,
and it will expect us to place some files following the pod convention.

For changes coming in Ember 2.0, read: The Road to Ember 2.0 RFC¹²³

Using pods

Let’s change our routes, controllers, and templates related to a friend so that they are located in the
pod called app/friends.

One easy way to find out where we should place our files is to look at the resolver log. We can enable
it by setting the property ENV.APP.LOG_RESOLVER to true in app/environment.js.

The following is the lookup log for objects related to a friend:

¹²³https://github.com/emberjs/rfcs/pull/15

https://github.com/emberjs/rfcs/pull/15
https://github.com/emberjs/rfcs/pull/15

PODS 130

pods lookup

[] template:friends borrowers/friends/template

[] route:friends/index borrowers/friends/index/route

[] controller:friends/index borrowers/friends/index/controller

[] template:friends/index borrowers/friends/index/template

[] route:friends/new borrowers/friends/new/route

[] controller:friends/new borrowers/friends/new/controller

[] template:friends/new borrowers/friends/new/template

[] route:friends/show borrowers/friends/show/route

[] controller:friends/show borrowers/friends/show/controller

[] template:friends/show borrowers/friends/show/template

We can start by creating a directory called friends followed by the child directories new, edit, index,
and show.

$ mkdir app/friends

$ mkdir app/friends/new

$ mkdir app/friends/show

$ mkdir app/friends/index

$ mkdir app/friends/edit

With the directories in place, we can start by moving the routes:

$ mv app/routes/friends/index.js app/friends/index/route.js

$ mv app/routes/friends/show.js app/friends/show/route.js

$ mv app/routes/friends/edit.js app/friends/edit/route.js

$ mv app/routes/friends/new.js app/friends/new/route.js

$ rm -rf app/routes/friends

If we run our acceptance tests for friends http://localhost:4200/tests?module=Acceptance%3A%20FriendsNew¹²⁴,
everything should work.

Next let’s move the templates:

¹²⁴http://localhost:4200/tests?module=Acceptance%3A%20FriendsNew

http://localhost:4200/tests?module=Acceptance%3A%20FriendsNew
http://localhost:4200/tests?module=Acceptance%3A%20FriendsNew

PODS 131

$ mv app/templates/friends/index.hbs app/friends/index/template.hbs

$ mv app/templates/friends/show.hbs app/friends/show/template.hbs

$ mv app/templates/friends/edit.hbs app/friends/edit/template.hbs

$ mv app/templates/friends/new.hbs app/friends/new/template.hbs

On the edit and new template, we are using a partial called “form.” The pods loookup for partials
expects the template to be located in the following file: borrowers/friends/-form/template. Let’s
move it there:

$ mkdir app/friends/-form

$ mv app/templates/friends/-form.hbs app/friends/-form/template.hbs

$ rm -rf app/templates/friends

Now the controllers:

$ mv app/controllers/friends/edit.js app/friends/edit/controller.js

$ mv app/controllers/friends/new.js app/friends/new/controller.js

$ mv app/controllers/friends/base.js app/friends/base-controller.js

Notice that we moved the base controller to app/friends/base-controller.js. We need to update
the references in app/friends/edit/controller.js and app/friends/new/controller.js.

Instead of:

import FriendsBaseController from './base';

We need:

import FriendsBaseController from '../base-controller';

If we update the browser, everything should work. We are now using pods for our friends.

Tasks
Change the structure for articles so that everything is under the pod articles.

Deploying Ember.js applications
In this chapter we’ll explore different alternatives to deploy our Ember.js applications. We’ll talk
about S3 and Divshot based deployments where our application is completely separated from our
API. Then we’ll cover how to do a deployment on Heroku using the heroku-buildpack-ember-cli,
which allows us to proxy requests to our API. Finally, we’ll talk about Redis based deployments in
Ruby on Rails and Node.js.

Deploying to S3

In order to host our application in S3, we’ll need to change our application adapter so it hits our
CORS enabled API and then generate a production build.

To consume the API without using ember-cli’s proxy feature, we need to set the property host in
the application adapter.

To do so, let’s add a configuration property called host in config/environment.js and then read it
from there.

Adding host to config/environment.js

/* jshint node: true */

module.exports = function(environment) {

var ENV = {

host: 'http://api.ember-cli-101.com',

// ...

Now we can use it in the application adapter as follows:

app/adapters/application.js

import DS from 'ember-data';

import config from '../config/environment';

export default DS.ActiveModelAdapter.extend({

host: config.host,

namespace: 'api/v4',

coalesceFindRequests: true

});

We also need to change app/routes/index.js to use the host:

Deploying Ember.js applications 133

app/routes/index.js

import Ember from 'ember';

import request from 'ic-ajax';

import config from '../config/environment';

export default Ember.Route.extend({

model: function() {

var host = config.host || '';

return request(host + '/api/friends').then(function(data){

return {

friendsCount: data.friends.length

};

});

}

});

Now we can stop the server and run it again without the option --proxy.

Next we need to generate the production build using the command ember build.

When we run ember server, we always run a build and add some extra stuff so that we can run
our project in development, but we don’t need the same files in production.

When we do ember build, the output goes by default to the directory dist. Let’s check that:

ember build

borrowers $ ember build

version: 0.1.5

Building...

Built project successfully. Stored in "dist/".

Inspecting the dist directory, we’ll see the following contents:

Deploying Ember.js applications 134

|- assets

|-- |- borrowers.css

|-- |- borrowers.js

|-- |- failed.png

|-- |- passed.png

|-- |- test-loader.js

|-- |- test-support.css

|-- |- test-support.js

|-- |- vendor.css

|-- |- vendor.js

|- crossdomain.xml

|- font

|-- |- fontello.eot

|-- |- fontello.svg

|-- |- fontello.ttf

|-- |- fontello.woff

|- index.html

|- robots.txt

|- testem.js

|- tests

|- index.html

Remember we can see the options for a command passing the option --help like ember

build --help.

Let’s talk about the assets directory first. All our JavaScript and stylesheet files will end in this
directory. We can also put other kinds of assets, such as images or fonts, under public/assets and
they will be merged into this directory. If we had the image public/assets/images/foo.png we
could reference it in our stylesheets like images/foo.png.

What about those test files? They are used for testing and only included in development or test
environments. If we go to http://localhost:4200/tests¹²⁵ and inspect the network tab, we’ll see that
those files are being used.

The tests directory is the entry point for running tests. testem.js is used by default when we do
ember test. It uses Testem to run the test with PhantomJS.

If we run the build command butwe specify production environment (e.g., ember build --environment

production) we’ll see a very different output:

¹²⁵http://localhost:4200/tests

http://localhost:4200/tests
http://localhost:4200/tests

Deploying Ember.js applications 135

.

|-- assets

|- |-- borrowers-97a85d25222a06c4a39d475c7ad27a73.js

|- |-- borrowers-985aabef341eea2a8b20d3e9e685d6b0.css

|- |-- images

|- |-- vendor-9877b53c34630081b26b7b9fd19d4bb8.css

|- |-- vendor-b29ae2f2e402c33a5d9c683aac4e0f8e.js

|-- crossdomain.xml

|-- font

|- |-- fontello.eot

|- |-- fontello.svg

|- |-- fontello.ttf

|- |-- fontello.woff

|-- index.html

|-- robots.txt

We have fewer files this time. Nothing related with testing is included because that is only a devel-
opment/tests concern. Our assets files were fingerprinted and minified. If we open dist/index.html
we’ll see that the references to them were updated as well:

<link rel="stylesheet" href="assets/vendor-9877b53c34630081b26b7b9fd19d4bb8.css">

<link rel="stylesheet" href="assets/borrowers-985aabef341eea2a8b20d3e9e685d6b0.c\

ss">

Fingerprinting is achieved using broccoli-asset-rev¹²⁶. This allows us the option to select the format
of the files we want to fingerprint and to append an URL to every asset.

All our assets should ideally be kept under the directory /assets, so let’s make sure our fonts are
put in there as well. To do this, we need to modify our Brocfile and the references to the fonts in
vendor/fontello/fontello.css.

To accomplish the first part we simply need to specify assets/fonts as the destDir for our imported
fonts:

¹²⁶https://github.com/rickharrison/broccoli-asset-rev

https://github.com/rickharrison/broccoli-asset-rev
https://github.com/rickharrison/broccoli-asset-rev

Deploying Ember.js applications 136

Brocfile.js

app.import('vendor/fontello/font/fontello.ttf', {

destDir: 'assets/fonts'

});

app.import('vendor/fontello/font/fontello.eot', {

destDir: 'assets/fonts'

});

app.import('vendor/fontello/font/fontello.svg', {

destDir: 'assets/fonts'

});

app.import('vendor/fontello/font/fontello.woff', {

destDir: 'assets/fonts'

});

If we run ember build --environment production, we’ll find our fonts under assets/fonts.

Putting fonts under assets directory

.

|-- assets

|-- |-- borrowers-985aabef341eea2a8b20d3e9e685d6b0.css

|-- |-- borrowers-da3abd96a2852e1cfa758c2d41b82a5e.js

|-- |-- fonts

|-- |-- |-- fontello.eot

|-- |-- |-- fontello.svg

|-- |-- |-- fontello.ttf

|-- |-- |-- fontello.woff

|-- |-- images

|-- |-- vendor-9877b53c34630081b26b7b9fd19d4bb8.css

|-- |-- vendor-b29ae2f2e402c33a5d9c683aac4e0f8e.js

|-- crossdomain.xml

|-- index.html

|-- robots.txt

Next we need to replace vendor/fontello/fontello.css to reference the fonts relative to fonts/

instead of ../font:

Deploying Ember.js applications 137

vendor/fontello/fontello.css

@font-face {

font-family: 'fontello';

src: url('fonts/fontello.eot?59907090');

src: url('fonts/fontello.eot?59907090#iefix') format('embedded-opentype'),

url('fonts/fontello.woff?59907090') format('woff'),

url('fonts/fontello.ttf?59907090') format('truetype'),

url('fonts/fontello.svg?59907090#fontello') format('svg');

font-weight: normal;

font-style: normal;

}

Now we are ready to deploy to an S3 bucket. We need to create the bucket and enable static website
hosting. Let’s set up an index document, index.html.

The following guide explains how to set up your S3 bucket: Hosting a Static Website on Amazon
S3¹²⁷

Once the bucket is set up, we can run ember build --environment production and then manually
upload all the files under dist. The following is an example of the site working on S3: http://ember-
cli-101.s3-website-us-east-1.amazonaws.com/¹²⁸

It is very important that we set our bucket as public. To do this, we can use the following bucket
policy:

S3 policy

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "AddPerm",

"Effect": "Allow",

"Principal": "*",

"Action": "s3:GetObject",

"Resource": "arn:aws:s3:::REPLACE-WITH-REAL-BUCKET-NAME/*"

}

]

}

¹²⁷http://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
¹²⁸http://ember-cli-101.s3-website-us-east-1.amazonaws.com/

http://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
http://ember-cli-101.s3-website-us-east-1.amazonaws.com/
http://ember-cli-101.s3-website-us-east-1.amazonaws.com/
http://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
http://ember-cli-101.s3-website-us-east-1.amazonaws.com/

Deploying Ember.js applications 138

The following tutorial explains how to achieve a setup using custom routing and Cloudfront: Hosting
a Static Website on Amazon Web Services¹²⁹

If we decide to use Cloudfront, we need to prepend the URL to our assets. To do this, we simply pass
the option in the Brocfile as follows:

Brocfile.js

var app = new EmberApp({

fingerprint: {

prepend: 'https://d29sqib8gy.cloudfront.net/'

},

});

If we run ember build --environment production and open dist/index.html, we’ll notice the
URL in our assets.

<script src="https://d29sqib8gy.cloudfront.net/assets/vendor-b29ae2f2e402c33a5d9\

c683aac4e0f8e.js"></script>

<script src="https://d29sqib8gy.cloudfront.net/assets/borrowers-c459411ce1cc8332\

ef795be81d96d1b6.js"></script>

A better approach to uploading our files to S3 is to create a task to do this for us. At the moment
there is no built-in support for this in ember-cli, but we can use Grunt¹³⁰ with the following plugin:
grunt-aws-s3¹³¹.

Deploying to Divshot

Divshot¹³² is a PaaS for deploying static websites. This is probably the easiest way to deploy such
applications, and Robert Jackson¹³³ wrote an ember-cli addon to make it even easier to deploy our
ember-cli applications.

Before installing the addon, we have to first create an account with them and then install their
command line interface:

npm install -g divshot-cli

After installing divshot-cli, we need to login typing divshot login.

Once we are logged in, we are ready to deploy our application. First install the addon ember-cli-
divshot¹³⁴:

¹²⁹http://docs.aws.amazon.com/gettingstarted/latest/swh/website-hosting-intro.html
¹³⁰http://gruntjs.com/
¹³¹https://github.com/MathieuLoutre/grunt-aws-s3
¹³²https://divshot.com/
¹³³https://twitter.com/rwjblue
¹³⁴https://github.com/rwjblue/ember-cli-divshot

http://docs.aws.amazon.com/gettingstarted/latest/swh/website-hosting-intro.html
http://docs.aws.amazon.com/gettingstarted/latest/swh/website-hosting-intro.html
http://gruntjs.com/
https://github.com/MathieuLoutre/grunt-aws-s3
https://divshot.com/
https://twitter.com/rwjblue
https://github.com/rwjblue/ember-cli-divshot
https://github.com/rwjblue/ember-cli-divshot
http://docs.aws.amazon.com/gettingstarted/latest/swh/website-hosting-intro.html
http://gruntjs.com/
https://github.com/MathieuLoutre/grunt-aws-s3
https://divshot.com/
https://twitter.com/rwjblue
https://github.com/rwjblue/ember-cli-divshot

Deploying Ember.js applications 139

npm install ember-cli-divshot --save-dev

With the addon installed, we need to set up DivShot with ember generate divshot, and after that
we can deploy just running ember divshot push.

Deploying to DivShot

$ ember divshot push

version: 0.1.5

Built project successfully. Stored in "dist".

Creating build ...

Hashing Directory Contents ...

Synced!

Finalizing build ...

Releasing build to development ...

Success: Application deployed to development

Success: You can view your app at: http://development.borrowers.divshot.io

That’s it! Our application has been deployed to http://development.borrowers.divshot.io¹³⁵.

Deploying to Heroku with the
heroku-buildpack-ember-cli

Deploying to Heroku¹³⁶ is a simple process thanks to Tony Coconate¹³⁷’s heroku-buildpack-ember-
cli¹³⁸.

Assuming we have already created an account on Heroku and installed heroku toolbelt¹³⁹, we can
now deploy with the following steps.

First we need to create an application based on the buildpack:

¹³⁵http://development.borrowers.divshot.io
¹³⁶http://heroku.com/
¹³⁷https://twitter.com/tonycoco
¹³⁸https://github.com/tonycoco/heroku-buildpack-ember-cli
¹³⁹https://toolbelt.heroku.com/

http://development.borrowers.divshot.io
http://heroku.com/
https://twitter.com/tonycoco
https://github.com/tonycoco/heroku-buildpack-ember-cli
https://github.com/tonycoco/heroku-buildpack-ember-cli
https://toolbelt.heroku.com/
http://development.borrowers.divshot.io
http://heroku.com/
https://twitter.com/tonycoco
https://github.com/tonycoco/heroku-buildpack-ember-cli
https://toolbelt.heroku.com/

Deploying Ember.js applications 140

$ heroku create --buildpack https://github.com/tonycoco/heroku-buildpack-ember-c\

li.git

Creating polar-cove-8298... done, stack is cedar

BUILDPACK_URL=https://github.com/tonycoco/heroku-buildpack-ember-cli.git

https://polar-cove-8298.herokuapp.com/ | git@heroku.com:polar-cove-8298.git

Git remote heroku added

Nowwe can deploy doing git push heroku master. We can see our application running on Heroku:
http://polar-cove-8298.herokuapp.com/¹⁴⁰

Using the Proxy Feature.

Supposing we don’t want to enable CORS in our API, the build-pack has a Proxy feature that acts
similarly to the one included with ember-cli.

Using the following command, we can set up the URL to which we want to proxy our request:

heroku config:set API_URL=http://api.ember-cli-101.com/

We can find more info about this in the Github repository¹⁴¹.

ember-cli-deploy

During RailsConf 2014, Luke Melia¹⁴² gave a talk called Lightning Fast Deployment of Your Rails-
backed JavaScript app¹⁴³.

Luke presented a solution to keep the deployment of JavaScript applications separate from the
backend. The basic idea is to deploy our assets to a CDN and then pass the generated index.html

via Redis to the application serving it.

Aaron Chambers¹⁴⁴ created an addon called ember-cli-deploy¹⁴⁵ that makes it super easy to
implement Luke’s ideas.

¹⁴⁰http://polar-cove-8298.herokuapp.com/
¹⁴¹https://github.com/tonycoco/heroku-buildpack-ember-cli#api-proxy
¹⁴²https://twitter.com/lukemelia
¹⁴³https://www.youtube.com/watch?v=QZVYP3cPcWQ
¹⁴⁴https://github.com/achambers
¹⁴⁵https://github.com/achambers/ember-cli-deploy

http://polar-cove-8298.herokuapp.com/
https://github.com/tonycoco/heroku-buildpack-ember-cli#api-proxy
https://twitter.com/lukemelia
https://www.youtube.com/watch?v=QZVYP3cPcWQ
https://www.youtube.com/watch?v=QZVYP3cPcWQ
https://github.com/achambers
https://github.com/achambers/ember-cli-deploy
http://polar-cove-8298.herokuapp.com/
https://github.com/tonycoco/heroku-buildpack-ember-cli#api-proxy
https://twitter.com/lukemelia
https://www.youtube.com/watch?v=QZVYP3cPcWQ
https://github.com/achambers
https://github.com/achambers/ember-cli-deploy

Updating your project to the latest
version of ember-cli
ember-cli is a project that is still moving quickly, so from time to time we’ll need to update our
applications to use the latest version.

By the time this chapter was written the application was using ember-cli 0.0.46, which was one of
the last releases before moving to 0.1.X. Now we want to move to the newest version in npm.

The following steps are the same that come listed with every release of ember-cli:

1. We get rid of the current installed version: npm uninstall -g ember-cli
2. A lot of libraries that ember-cli relied on were updated as well. We want to make sure we are

getting the latest versions from npm and not using the ones we had previously installed. To
do that, we clean the npm cache with: npm cache clean

3. Now we’ll do the same with bower: bower cache clean
4. Finally, we’ll install ember-cli again: npm install -g ember-cli

Once we have installed the latest version of ember-cli, we need to update our project. Let’s run the
following commands in the borrowers app directory:

1. Remove installed libraries, dist files, and temporary files: rm -rf node_modules bower_com-
ponents dist tmp

2. Next we need to update ember-cli’s version in package.json running: npm install –save-dev
ember-cli

3. Install dependencies: npm install && bower install

We are almost done. We have upgraded ember-cli and dependencies successfully, but we still need
to upgrade some files in our projects. The good news is that we don’t have to do it all manually. We
can use the command ember init. When we run this it will try to make some changes in some of
our existing files, and we can answer these requests with any of the following options:

Updating your project to the latest version of ember-cli 142

Updating ember-cli

y) Yes, overwrite

n) No, skip

d) Diff

h) Help, list all options

A good approach is to first inspect what changed with the option d and then decide if we want to
accept the change or not.

Let’s run ember init and see the output. We’ll also include some comments that are not part of the
original output just to clarify:

$ ember init .

version: 0.1.5

installing

#

ember-cli will try to replace some files with their blueprint version

we'll respond with d to see the diff

#

[?] Overwrite /borrowers/Brocfile.js? (Yndh) d

--- /borrowers/Brocfile.js

+++ /borrowers/Brocfile.js

@@ -3,28 +3,18 @@

var EmberApp = require('ember-cli/lib/broccoli/ember-app');

var app = new EmberApp();

+// Use `app.import` to add additional libraries to the generated

+// output files.

+//

+// If you need to use different assets in different

+// environments, specify an object as the first parameter. That

+// object's keys should be the environment name and the values

+// should be the asset to use in that environment.

+//

+// If the library that you are including contains AMD or ES6

+// modules that you would like to import into your application,

Updating your project to the latest version of ember-cli 143

+// please specify an object with the list of modules as keys

+// along with the exports of each module as its value.

-app.import('vendor/fontello/fontello.css');

-app.import('vendor/fontello/font/fontello.ttf', {

- destDir: 'font'

-});

-app.import('vendor/fontello/font/fontello.eot', {

- destDir: 'font'

-});

-app.import('vendor/fontello/font/fontello.svg', {

- destDir: 'font'

-});

-app.import('vendor/fontello/font/fontello.woff', {

- destDir: 'font'

-});

-app.import('bower_components/picnic/releases/v2.min.css');

-app.import('bower_components/moment/moment.js');

-app.import('bower_components/borrowers-dates/index.js', {

- exports: {

- 'borrowers-dates': [

- 'format'

-]

- }

-});

module.exports = app.toTree();

[?] Overwrite /borrowers/Brocfile.js? n

In the diff above, the line with a plus (+) sign is what will get added and the lines with the minus (-)
will be removed.

In this specific scenario, nothing important got added to the Brocfile and it is trying to remove our
imports. We can simply ignore this file with the option n.

Next it asks us if we want to overwrite the README. This file is only a blueprint, so we can ignore
it safely by hitting the key n.

[?] Overwrite /borrowers/README.md? (Yndh)

The next file is index.html. This file can change from time to time, so we should keep an eye on it.
Let’s see the diff with d:

Updating your project to the latest version of ember-cli 144

[?] Overwrite /borrowers/app/index.html? d

--- /borrowers/app/index.html

+++ /borrowers/app/index.html

@@ -6,20 +6,14 @@

<title>Borrowers</title>

<meta name="description" content="">

<meta name="viewport" content="width=device-width, initial-scale=1">

+ {{content-for 'head'}}

- {{BASE_TAG}}

<link rel="stylesheet" href="assets/vendor.css">

<link rel="stylesheet" href="assets/borrowers.css">

</head>

<body>

- <script type="text/javascript">

- window.EmberENV = {{EMBER_ENV}};

- </script>

<script src="assets/vendor.js"></script>

<script src="assets/borrowers.js"></script>

- <script type="text/javascript">

- window.Borrowers = require('borrowers/app')['default'].create({{APP_CONFI\

G}});

- </script>

</body>

</html>

[?] Overwrite /borrowers/app/index.html? (Yndh) Y

At the beginning, ember-cli used to include inline scripts for starting the app and defining a global
ENV variable. It has changed to encourage users to write CSP-compliant applications.

CSP (Content Security Policy) is basically a mechanism to help us write more secure applications.
The following is a great write-up by the HTML5 Rocks folks: An Introduction to Content Security
Policy¹⁴⁶.

Next we have router.js and application.hbs. We won’t include the output for the diffs for the sake
of brevity, but the first one doesn’t change very often and the latter one can be ignored since we
don’t want any changes in our application template.

¹⁴⁶http://www.html5rocks.com/en/tutorials/security/content-security-policy/

http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Updating your project to the latest version of ember-cli 145

Unless we are in a version lower than 0.0.46, we can safely ignore both.

lang=bash

[?] Overwrite /borrowers/app/router.js? (Yndh) n

[?] Overwrite /borrowers/app/templates/application.hbs? (Yndh) n

Next it will ask us if we want to overwrite bower.json. This and package.json will probably change
often since dependencies get updated frequently. Here is where our revision control system plus a
bit of strategy comes in really handy. Let’s inspect the diff with d:

lang=bash

[?] Overwrite /borrowers/bower.json? (Yndh) d

--- /borrowers/bower.json

+++ /borrowers/bower.json

@@ -2,19 +2,16 @@

"name": "borrowers",

"dependencies": {

"handlebars": "~1.3.0",

"query": "^1.11.1",

"ember": "1.7.0",

"ember-data": "1.0.0-beta.10",

"ember-resolver": "~0.1.7",

+ "loader.js": "stefanpenner/loader.js#1.0.1",

- "loader": "stefanpenner/loader.js#1.0.1",

"ember-cli-shims": "stefanpenner/ember-cli-shims#0.0.3",

"ember-cli-test-loader": "rwjblue/ember-cli-test-loader#0.0.4",

"ember-load-initializers": "stefanpenner/ember-load-initializers#0.0.2",

"ember-qunit": "0.1.8",

"ember-qunit-notifications": "0.0.4",

+ "qunit": "~1.15.0"

- "qunit": "~1.15.0",

- "picnic": "https://github.com/picnicss/picnic.git",

- "moment": "~2.8.3",

- "borrowers-dates": "~0.0.1"

}

}

[?] Overwrite /borrowers/bower.json? (Yndh) Y

Updating your project to the latest version of ember-cli 146

In this scenario Ember and Ember-Data didn’t change but it might happen from time to
time that Ember and Ember-Data get updated to their latest available release, in case we
don’t want to update those libraries we can just ignore the changes to those lines.

We responded with yes to the previous command. In this particular case, not many dependencies
changed but we need the update anyways. We also notice that the dependencies we added were
deleted.

How do we deal with this in a scenario where there are a lot of dependencies changed and the ones
introduced by us get deleted? Version control systems to the rescue!

A good strategy is to put all of our dependencies at the end of the default libraries (after QUnit) and
then simply overwrite the whole file when updating.

If we are using Git, we can bring back that last hunk that was deleted from our file; it can easily
be done with any GUI based tool. If you are an Emacs user you can use diff-hl-mode, Sublime
emacs-git-gutter, or Vim’s vim-gitgutter.

Next is environment.js. We should check the changes here since it could have breaking changes:

[?] Overwrite /borrowers/config/environment.js? d

--- /borrowers/config/environment.js

+++ /borrowers/config/environment.js

@@ -20,9 +20,9 @@

};

if (environment === 'development') {

// ENV.APP.LOG_RESOLVER = true;

+ ENV.APP.LOG_ACTIVE_GENERATION = true;

- // ENV.APP.LOG_ACTIVE_GENERATION = true;

// ENV.APP.LOG_TRANSITIONS = true;

// ENV.APP.LOG_TRANSITIONS_INTERNAL = true;

ENV.APP.LOG_VIEW_LOOKUPS = true;

}

As in previous scenarios, there are not many significant changes, so we can simply ignore by
responding with n.

Next is package.json. Most of the changes are packages being updated. We’ll say yes to this change.
Again, use the same strategy mentioned with bower.json by putting our own libraries at the end.

Updating your project to the latest version of ember-cli 147

[?] Overwrite /borrowers/package.json? (Yndh) d

--- /borrowers/package.json

+++ /borrowers/package.json

@@ -18,13 +18,14 @@

"author": "",

"license": "MIT",

"devDependencies": {

"body-parser": "^1.2.0",

+ "broccoli-asset-rev": "0.3.0",

- "broccoli-asset-rev": "0.1.1",

"broccoli-ember-hbs-template-compiler": "^1.6.1",

+ "ember-cli": "0.1.1",

+ "ember-cli-content-security-policy": "0.2.0",

- "ember-cli": "^0.1.1",

"ember-cli-ic-ajax": "0.1.1",

+ "ember-cli-inject-live-reload": "^1.2.2",

- "ember-cli-inject-live-reload": "^1.0.2",

"ember-cli-qunit": "0.1.0",

"ember-data": "1.0.0-beta.10",

"express": "^4.8.5",

"glob": "^4.0.5"

Next is .jshintrc. Ideally we shouldn’t have a lot of things in there, but we should be especially
careful if we are whitelisting some vars. In this case we’ll accept the change because we don’t have
anything custom.

[?] Overwrite /borrowers/tests/.jshintrc? (Yndh) Y

Next we have test helper files, which we are going to accept because we haven’t edited any of those
files.

Updating your project to the latest version of ember-cli 148

[?] Overwrite /borrowers/tests/helpers/start-app.js? y

[?] Overwrite /borrowers/tests/index.html? y

[?] Overwrite /borrowers/tests/test-helper.js? y

We are almost done. Using the strategy we mentioned to bring back different hunks in a file, we’ll
make sure bower.json has the following packages after QUnit:

"picnic": "https://github.com/picnicss/picnic.git",

"moment": "~2.8.3",

"borrowers-dates": "~0.0.1"

Now we are done. If we run ember server –proxy http://api.ember-cli-101.com, the application
should start without any problems.

	Table of Contents
	Why
	Anatomy
	Conventions
	In your code
	In your project

	Getting started
	Requirements
	ember new

	Hands-on
	Adding a friend resource
	Connecting with a Backend
	A word on Adapters
	Listing our friends
	Adding a new friend
	Viewing a friend profile
	Updating a friend profile
	Deleting friends
	Mockups
	Installing Dependencies
	Articles Resource
	Defining relationships.
	Nested Articles Index
	Lending new articles
	Computed Property Macros
	Using Item controller to mark an article as returned.
	Implementing auto save.
	Route hooks

	Working with JavaScript plugins
	Installing moment
	It's a global!
	Wrapping globals
	Writing an Ember helper: formatted-date.
	Working with libraries with named AMD distributions.
	ember-browserify
	Wrapping up

	Components and Addons
	Web Components
	ember-cli addons
	ember-cli-fill-murray
	Consuming fill-murray in borrowers

	Ember Data
	DS.Store Public API
	Loading relationships
	Working with async relationships in Ember-Data
	What to use?

	Computed Properties and Observers
	An alternative syntax for computed properties
	Computed Property function signature
	Computed Properties gotchas
	Observers
	Observing collections

	Driving our application state through the URL
	Sorting friends.
	Query Parameters
	Refreshing the model when query parameters changes
	Further Reading

	Testing Ember.js applications
	Unit Testing
	Acceptance Tests
	Further Reading

	PODS
	Using pods

	Deploying Ember.js applications
	Deploying to S3
	Deploying to Divshot
	Deploying to Heroku with the heroku-buildpack-ember-cli
	ember-cli-deploy

	Updating your project to the latest version of ember-cli

