123 lines
3.6 KiB
C++
123 lines
3.6 KiB
C++
// Signal peak detector using smoothed z-score algorithm.
|
|
// Detects when a continuous signal has a significant peak in values. Based on
|
|
// algorithm from the answer here:
|
|
// https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/22640362#22640362
|
|
// Author: Tony DiCola
|
|
// License: MIT License (https://opensource.org/licenses/MIT)
|
|
// Usage:
|
|
// - Create an instance of the PeakDetector class and configure its lag, threshold,
|
|
// and influence. These likely need to be adjust to fit your dataset. See the
|
|
// Stack Overflow question above for more details on their meaning.
|
|
// - Continually call detect and feed it a new sample value. Detect will return 0
|
|
// if no peak was detected, 1 if a positive peak was detected and -1 if a negative
|
|
// peak was detected.
|
|
#ifndef PEAKDETECTOR_H
|
|
#define PEAKDETECTOR_H
|
|
|
|
class PeakDetector {
|
|
public:
|
|
PeakDetector(const int lag=5, const float threshold=3.5, const float influence=0.5):
|
|
_lag(lag), _threshold(threshold), _influence(influence), _avg(0.0), _std(0.0), _primed(false), _index(0)
|
|
{
|
|
// Allocate memory for last samples (used during averaging) and set them all to zero.
|
|
_filtered = new float[lag];
|
|
for (int i=0; i<lag; ++i) {
|
|
_filtered[i] = 0.0;
|
|
}
|
|
}
|
|
|
|
~PeakDetector() {
|
|
// Deallocate memory for samples.
|
|
if (_filtered != NULL) {
|
|
delete[] _filtered;
|
|
}
|
|
}
|
|
|
|
int detect(float sample) {
|
|
// Detect if the provided sample is a positive or negative peak.
|
|
// Will return 0 if no peak detected, 1 if a positive peak and -1
|
|
// if a negative peak.
|
|
int result = 0;
|
|
// Fill up filtered samples if not yet primed with enough available samples.
|
|
if (_primed && (abs(sample-_avg) > (_threshold*_std))) {
|
|
// Detected a peak!
|
|
// Determine type of peak, positive or negative.
|
|
if (sample > _avg) {
|
|
result = 1;
|
|
}
|
|
else {
|
|
result = -1;
|
|
}
|
|
// Save this sample but scaled down based on influence.
|
|
_filtered[_index] = (_influence*sample) + ((1.0-_influence)*_filtered[_previousIndex()]);
|
|
}
|
|
else {
|
|
// Did not detect a peak, or not yet primed with enough samples.
|
|
// Just record this sample and move on.
|
|
_filtered[_index] = sample;
|
|
}
|
|
// Increment index of next filtered sample.
|
|
_incrementIndex();
|
|
// When primed update the average and standard deviation of the most recent
|
|
// filtered values.
|
|
if (_primed) {
|
|
// Compute mean of filtered values.
|
|
_avg = 0.0;
|
|
for (int i=0; i<_lag; ++i) {
|
|
_avg += _filtered[i];
|
|
}
|
|
_avg = _avg/float(_lag);
|
|
// Compute standard deviation of filtered values.
|
|
_std = 0.0;
|
|
for (int i=0; i<_lag; ++i) {
|
|
_std += pow(_filtered[i]-_avg, 2.0);
|
|
}
|
|
_std = sqrt(_std/float(_lag));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
float getAvg() {
|
|
// Return the current signal average, useful for debugging.
|
|
return _avg;
|
|
}
|
|
|
|
float getStd() {
|
|
// Return the current signal standard deviation, useful for debugging.
|
|
return _std;
|
|
}
|
|
|
|
private:
|
|
float _lag;
|
|
float _threshold;
|
|
float _influence;
|
|
float* _filtered;
|
|
float _avg;
|
|
float _std;
|
|
bool _primed;
|
|
int _index;
|
|
|
|
void _incrementIndex() {
|
|
// Increment the index of the current sample.
|
|
_index += 1;
|
|
if (_index >= _lag) {
|
|
// Loop back to start of sample buffer when full, but be sure to note
|
|
// when this happens to indicate we are primed with enough samples.
|
|
_index = 0;
|
|
_primed = true;
|
|
}
|
|
}
|
|
|
|
int _previousIndex() {
|
|
// Find the index of the last sample.
|
|
int result = _index-1;
|
|
if (result < 0) {
|
|
result = _lag-1;
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|